16 results on '"Verkindt, Helene"'
Search Results
2. Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study
- Author
-
Saux, Patrick, Bauvin, Pierre, Raverdy, Violeta, Teigny, Julien, Verkindt, Hélène, Soumphonphakdy, Tomy, Debert, Maxence, Jacobs, Anne, Jacobs, Daan, Monpellier, Valerie, Lee, Phong Ching, Lim, Chin Hong, Andersson-Assarsson, Johanna C, Carlsson, Lena, Svensson, Per-Arne, Galtier, Florence, Dezfoulian, Guelareh, Moldovanu, Mihaela, Andrieux, Severine, Couster, Julien, Lepage, Marie, Lembo, Erminia, Verrastro, Ornella, Robert, Maud, Salminen, Paulina, Mingrone, Geltrude, Peterli, Ralph, Cohen, Ricardo V, Zerrweck, Carlos, Nocca, David, Roux, Carel W Le, Caiazzo, Robert, Preux, Philippe, and Pattou, François
- Subjects
Computer Science - Machine Learning ,Statistics - Applications - Abstract
Background Weight loss trajectories after bariatric surgery vary widely between individuals, and predicting weight loss before the operation remains challenging. We aimed to develop a model using machine learning to provide individual preoperative prediction of 5-year weight loss trajectories after surgery. Methods In this multinational retrospective observational study we enrolled adult participants (aged $\ge$18 years) from ten prospective cohorts (including ABOS [NCT01129297], BAREVAL [NCT02310178], the Swedish Obese Subjects study, and a large cohort from the Dutch Obesity Clinic [Nederlandse Obesitas Kliniek]) and two randomised trials (SleevePass [NCT00793143] and SM-BOSS [NCT00356213]) in Europe, the Americas, and Asia, with a 5 year followup after Roux-en-Y gastric bypass, sleeve gastrectomy, or gastric band. Patients with a previous history of bariatric surgery or large delays between scheduled and actual visits were excluded. The training cohort comprised patients from two centres in France (ABOS and BAREVAL). The primary outcome was BMI at 5 years. A model was developed using least absolute shrinkage and selection operator to select variables and the classification and regression trees algorithm to build interpretable regression trees. The performances of the model were assessed through the median absolute deviation (MAD) and root mean squared error (RMSE) of BMI. Findings10 231 patients from 12 centres in ten countries were included in the analysis, corresponding to 30 602 patient-years. Among participants in all 12 cohorts, 7701 (75$\bullet$3%) were female, 2530 (24$\bullet$7%) were male. Among 434 baseline attributes available in the training cohort, seven variables were selected: height, weight, intervention type, age, diabetes status, diabetes duration, and smoking status. At 5 years, across external testing cohorts the overall mean MAD BMI was 2$\bullet$8 kg/m${}^2$ (95% CI 2$\bullet$6-3$\bullet$0) and mean RMSE BMI was 4$\bullet$7 kg/m${}^2$ (4$\bullet$4-5$\bullet$0), and the mean difference between predicted and observed BMI was-0$\bullet$3 kg/m${}^2$ (SD 4$\bullet$7). This model is incorporated in an easy to use and interpretable web-based prediction tool to help inform clinical decision before surgery. InterpretationWe developed a machine learning-based model, which is internationally validated, for predicting individual 5-year weight loss trajectories after three common bariatric interventions., Comment: The Lancet Digital Health, 2023
- Published
- 2023
- Full Text
- View/download PDF
3. Time-of-day-dependent variation of the human liver transcriptome and metabolome is disrupted in MASLD
- Author
-
Johanns, Manuel, Haas, Joel T., Raverdy, Violetta, Vandel, Jimmy, Chevalier-Dubois, Julie, Guille, Loic, Derudas, Bruno, Legendre, Benjamin, Caiazzo, Robert, Verkindt, Helene, Gnemmi, Viviane, Leteurtre, Emmanuelle, Derhourhi, Mehdi, Bonnefond, Amélie, Froguel, Philippe, Eeckhoute, Jérôme, Lassailly, Guillaume, Mathurin, Philippe, Pattou, François, Staels, Bart, and Lefebvre, Philippe
- Published
- 2024
- Full Text
- View/download PDF
4. NASH-related increases in plasma bile acid levels depend on insulin resistance
- Author
-
Grzych, Guillaume, Chávez-Talavera, Oscar, Descat, Amandine, Thuillier, Dorothée, Verrijken, An, Kouach, Mostafa, Legry, Vanessa, Verkindt, Hélène, Raverdy, Violeta, Legendre, Benjamin, Caiazzo, Robert, Van Gaal, Luc, Goossens, Jean-Francois, Paumelle, Réjane, Francque, Sven, Pattou, François, Haas, Joel T., Tailleux, Anne, and Staels, Bart
- Published
- 2021
- Full Text
- View/download PDF
5. Bariatric Surgery Provides Long-term Resolution of Nonalcoholic Steatohepatitis and Regression of Fibrosis
- Author
-
Lassailly, Guillaume, Caiazzo, Robert, Ntandja-Wandji, Line-Carolle, Gnemmi, Viviane, Baud, Gregory, Verkindt, Helene, Ningarhari, Massih, Louvet, Alexandre, Leteurtre, Emmanuelle, Raverdy, Violeta, Dharancy, Sébastien, Pattou, François, and Mathurin, Philippe
- Published
- 2020
- Full Text
- View/download PDF
6. Combining diabetes, sex, and menopause as meaningful clinical features associated with NASH and liver fibrosis in individuals with class II and III obesity: A retrospective cohort study
- Author
-
Raverdy, Violeta, primary, Chatelain, Estelle, additional, Lasailly, Guillaume, additional, Caiazzo, Robert, additional, Vandel, Jimmy, additional, Verkindt, Helene, additional, Marciniak, Camille, additional, Legendre, Benjamin, additional, Bauvin, Pierre, additional, Oukhouya‐Daoud, Naima, additional, Baud, Gregory, additional, Chetboun, Mikael, additional, Vantyghem, Marie‐Christine, additional, Gnemmi, Viviane, additional, Leteurtre, Emmanuelle, additional, Staels, Bart, additional, Lefebvre, Philippe, additional, Mathurin, Philippe, additional, Marot, Guillemette, additional, and Pattou, Francois, additional
- Published
- 2023
- Full Text
- View/download PDF
7. Time-of-day-dependent variation of the human liver transcriptome and metabolome is disrupted in MASLD
- Author
-
Johanns, Manuel, primary, Haas, Joel T., additional, Raverdy, Violetta, additional, Vandel, Jimmy, additional, Chevalier-Dubois, Julie, additional, Guille, Loic, additional, Derudas, Bruno, additional, Legendre, Benjamin, additional, Caiazzo, Robert, additional, Verkindt, Helene, additional, Gnemmi, Viviane, additional, Leteurtre, Emmanuelle, additional, Derhourhi, Mehdi, additional, Bonnefond, Amélie, additional, Froguel, Philippe, additional, Eeckhoute, Jérôme, additional, Lassailly, Guillaume, additional, Mathurin, Philippe, additional, Pattou, François, additional, Staels, Bart, additional, and Lefebvre, Philippe, additional
- Published
- 2023
- Full Text
- View/download PDF
8. Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits
- Author
-
Brown, Andrew A., Fernandez-Tajes, Juan J., Hong, Mun gwan, Brorsson, Caroline A., Koivula, Robert W., Davtian, David, Dupuis, Théo, Sartori, Ambra, Michalettou, Theodora Dafni, Forgie, Ian M., Adam, Jonathan, Allin, Kristine H., Caiazzo, Robert, Cederberg, Henna, De Masi, Federico, Elders, Petra J.M., Giordano, Giuseppe N., Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison J., Howald, Cédric, Jones, Angus G., Kokkola, Tarja, Laakso, Markku, Mahajan, Anubha, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Mourby, Miranda, Musholt, Petra B., Nilsson, Birgitte, Pattou, Francois, Penet, Deborah, Raverdy, Violeta, Ridderstråle, Martin, Romano, Luciana, Rutters, Femke, Sharma, Sapna, Teare, Harriet, ‘t Hart, Leen, Tsirigos, Konstantinos D., Vangipurapu, Jagadish, Vestergaard, Henrik, Brunak, Søren, Franks, Paul W., Frost, Gary, Grallert, Harald, Jablonka, Bernd, McCarthy, Mark I., Pavo, Imre, Pedersen, Oluf, Ruetten, Hartmut, Walker, Mark, Adragni, Kofi, Allesøe, Rosa Lundbye L., Artati, Anna A., Arumugam, Manimozhiyan, Atabaki-Pasdar, Naeimeh, Baltauss, Tania, Banasik, Karina, Barnett, Anna L., Baum, Patrick, Bell, Jimmy D., Beulens, Joline W., Bianzano, Susanna B., Bizzotto, Roberto, Bonnefond, Amelie, Cabrelli, Louise, Dale, Matilda, Dawed, Adem Y., de Preville, Nathalie, Dekkers, Koen F., Deshmukh, Harshal A., Dings, Christiane, Donnelly, Louise, Dutta, Avirup, Ehrhardt, Beate, Engelbrechtsen, Line, Eriksen, Rebeca, Fan, Yong, Ferrer, Jorge, Fitipaldi, Hugo, Forman, Annemette, Fritsche, Andreas, Froguel, Philippe, Gassenhuber, Johann, Gough, Stephen, Graefe-Mody, Ulrike, Grempler, Rolf, Groeneveld, Lenka, Groop, Leif, Gudmundsdóttir, Valborg, Gupta, Ramneek, Hennige, Anita M.H., Hill, Anita V., Holl, Reinhard W., Hudson, Michelle, Jacobsen, Ulrik Plesner, Jennison, Christopher, Johansen, Joachim, Jonsson, Anna, Karaderi, Tugce, Kaye, Jane, Kennedy, Gwen, Klintenberg, Maria, Kuulasmaa, Teemu, Lehr, Thorsten, Loftus, Heather, Lundgaard, Agnete Troen T., Mazzoni, Gianluca, McRobert, Nicky, McVittie, Ian, Nice, Rachel, Nicolay, Claudia, Nijpels, Giel, Palmer, Colin N., Pedersen, Helle K., Perry, Mandy H., Pomares-Millan, Hugo, Prehn, Cornelia P., Ramisch, Anna, Rasmussen, Simon, Robertson, Neil, Rodriquez, Marianne, Sackett, Peter, Scherer, Nina, Shah, Nisha, Sihinevich, Iryna, Slieker, Roderick C., Sondertoft, Nadja B., Steckel-Hamann, Birgit, Thomas, Melissa K., Thomas, Cecilia Engel E., Thomas, Elizabeth Louise L., Thorand, Barbara, Thorne, Claire E., Tillner, Joachim, Tura, Andrea, Uhlen, Mathias, van Leeuwen, Nienke, van Oort, Sabine, Verkindt, Helene, Vogt, Josef, Wad Sackett, Peter W., Wesolowska-Andersen, Agata, Whitcher, Brandon, White, Margaret W., Adamski, Jerzy, Schwenk, Jochen M., Pearson, Ewan R., Dermitzakis, Emmanouil T., Viñuela, Ana, Brown, Andrew A., Fernandez-Tajes, Juan J., Hong, Mun gwan, Brorsson, Caroline A., Koivula, Robert W., Davtian, David, Dupuis, Théo, Sartori, Ambra, Michalettou, Theodora Dafni, Forgie, Ian M., Adam, Jonathan, Allin, Kristine H., Caiazzo, Robert, Cederberg, Henna, De Masi, Federico, Elders, Petra J.M., Giordano, Giuseppe N., Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison J., Howald, Cédric, Jones, Angus G., Kokkola, Tarja, Laakso, Markku, Mahajan, Anubha, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Mourby, Miranda, Musholt, Petra B., Nilsson, Birgitte, Pattou, Francois, Penet, Deborah, Raverdy, Violeta, Ridderstråle, Martin, Romano, Luciana, Rutters, Femke, Sharma, Sapna, Teare, Harriet, ‘t Hart, Leen, Tsirigos, Konstantinos D., Vangipurapu, Jagadish, Vestergaard, Henrik, Brunak, Søren, Franks, Paul W., Frost, Gary, Grallert, Harald, Jablonka, Bernd, McCarthy, Mark I., Pavo, Imre, Pedersen, Oluf, Ruetten, Hartmut, Walker, Mark, Adragni, Kofi, Allesøe, Rosa Lundbye L., Artati, Anna A., Arumugam, Manimozhiyan, Atabaki-Pasdar, Naeimeh, Baltauss, Tania, Banasik, Karina, Barnett, Anna L., Baum, Patrick, Bell, Jimmy D., Beulens, Joline W., Bianzano, Susanna B., Bizzotto, Roberto, Bonnefond, Amelie, Cabrelli, Louise, Dale, Matilda, Dawed, Adem Y., de Preville, Nathalie, Dekkers, Koen F., Deshmukh, Harshal A., Dings, Christiane, Donnelly, Louise, Dutta, Avirup, Ehrhardt, Beate, Engelbrechtsen, Line, Eriksen, Rebeca, Fan, Yong, Ferrer, Jorge, Fitipaldi, Hugo, Forman, Annemette, Fritsche, Andreas, Froguel, Philippe, Gassenhuber, Johann, Gough, Stephen, Graefe-Mody, Ulrike, Grempler, Rolf, Groeneveld, Lenka, Groop, Leif, Gudmundsdóttir, Valborg, Gupta, Ramneek, Hennige, Anita M.H., Hill, Anita V., Holl, Reinhard W., Hudson, Michelle, Jacobsen, Ulrik Plesner, Jennison, Christopher, Johansen, Joachim, Jonsson, Anna, Karaderi, Tugce, Kaye, Jane, Kennedy, Gwen, Klintenberg, Maria, Kuulasmaa, Teemu, Lehr, Thorsten, Loftus, Heather, Lundgaard, Agnete Troen T., Mazzoni, Gianluca, McRobert, Nicky, McVittie, Ian, Nice, Rachel, Nicolay, Claudia, Nijpels, Giel, Palmer, Colin N., Pedersen, Helle K., Perry, Mandy H., Pomares-Millan, Hugo, Prehn, Cornelia P., Ramisch, Anna, Rasmussen, Simon, Robertson, Neil, Rodriquez, Marianne, Sackett, Peter, Scherer, Nina, Shah, Nisha, Sihinevich, Iryna, Slieker, Roderick C., Sondertoft, Nadja B., Steckel-Hamann, Birgit, Thomas, Melissa K., Thomas, Cecilia Engel E., Thomas, Elizabeth Louise L., Thorand, Barbara, Thorne, Claire E., Tillner, Joachim, Tura, Andrea, Uhlen, Mathias, van Leeuwen, Nienke, van Oort, Sabine, Verkindt, Helene, Vogt, Josef, Wad Sackett, Peter W., Wesolowska-Andersen, Agata, Whitcher, Brandon, White, Margaret W., Adamski, Jerzy, Schwenk, Jochen M., Pearson, Ewan R., Dermitzakis, Emmanouil T., and Viñuela, Ana
- Abstract
We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue.
- Published
- 2023
9. Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients
- Author
-
Margerie, Daniel, Lefebvre, Philippe, Raverdy, Violeta, Schwahn, Uwe, Ruetten, Hartmut, Larsen, Philip, Duhamel, Alain, Labreuche, Julien, Thuillier, Dorothée, Derudas, Bruno, Gheeraert, Céline, Dehondt, Hélène, Dhalluin, Quentin, Alexandre, Jérémy, Caiazzo, Robert, Nesslany, Pamela, Verkindt, Helene, Pattou, François, and Staels, Bart
- Published
- 2019
- Full Text
- View/download PDF
10. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients
- Author
-
Lassailly, Guillaume, Caiazzo, Robert, Buob, David, Pigeyre, Marie, Verkindt, Hélène, Labreuche, Julien, Raverdy, Violeta, Leteurtre, Emmanuelle, Dharancy, Sébastien, Louvet, Alexandre, Romon, Monique, Duhamel, Alain, Pattou, François, and Mathurin, Philippe
- Published
- 2015
- Full Text
- View/download PDF
11. Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
- Author
-
Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., de Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, Brunak, S. ren, Froguel, Philippe, Thomas, Cecilia Engel, Haussler, Ragna, Beulens, Joline, Rutters, Femke, Nijpels, Giel, van Oort, Sabine, Groeneveld, Lenka, Elders, Petra, Giorgino, Toni, Rodriquez, Marianne, Nice, Rachel, Perry, Mandy, Bianzano, Susanna, Graefe-Mody, Ulrike, Hennige, Anita, Grempler, Rolf, Baum, Patrick, Stærfeldt, Hans-Henrik, Shah, Nisha, Teare, Harriet, Ehrhardt, Beate, Tillner, Joachim, Dings, Christiane, Lehr, Thorsten, Scherer, Nina, Sihinevich, Iryna, Cabrelli, Louise, Loftus, Heather, Bizzotto, Roberto, Tura, Andrea, Dekkers, Koen, van Leeuwen, Nienke, Groop, Leif, Slieker, Roderick, Ramisch, Anna, Jennison, Christopher, McVittie, Ian, Frau, Francesca, Steckel-Hamann, Birgit, Adragni, Kofi, Thomas, Melissa, Pasdar, Naeimeh Atabaki, Fitipaldi, Hugo, Kurbasic, Azra, Mutie, Pascal, Pomares-Millan, Hugo, Bonnefond, Amelie, Canouil, Mickael, Caiazzo, Robert, Verkindt, Helene, Holl, Reinhard, Kuulasmaa, Teemu, Deshmukh, Harshal, Cederberg, Henna, Laakso, Markku, Vangipurapu, Jagadish, Dale, Matilda, Thorand, Barbara, Nicolay, Claudia, Fritsche, Andreas, Hill, Anita, Hudson, Michelle, Thorne, Claire, Allin, Kristine, Arumugam, Manimozhiyan, Jonsson, Anna, Engelbrechtsen, Line, Forman, Annemette, Dutta, Avirup, Sondertoft, Nadja, Fan, Yong, Gough, Stephen, Robertson, Neil, McRobert, Nicky, Wesolowska-Andersen, Agata, Brown, Andrew, Davtian, David, Dawed, Adem, Donnelly, Louise, Palmer, Colin, White, Margaret, Ferrer, Jorge, Whitcher, Brandon, Artati, Anna, Prehn, Cornelia, Adam, Jonathan, Grallert, Harald, Gupta, Ramneek, Sackett, Peter Wad, Nilsson, Birgitte, Tsirigos, Konstantinos, Eriksen, Rebeca, Jablonka, Bernd, Uhlen, Mathias, Gassenhuber, Johann, Baltauss, Tania, de Preville, Nathalie, Klintenberg, Maria, Abdalla, Moustafa, Lundgaard, Agnete Troen [0000-0001-7447-6560], Hernández Medina, Ricardo [0000-0001-6373-2362], Johansen, Joachim [0000-0001-7052-1870], Niu, Lili [0000-0003-4571-4368], Biel, Jorge Hernansanz [0000-0002-3125-2951], Benros, Michael Eriksen [0000-0003-4939-9465], Pedersen, Anders Gorm [0000-0001-9650-8965], Jacobsen, Ulrik Plesner [0000-0001-9181-6854], Koivula, Robert [0000-0002-1646-4163], Vinuela, Ana [0000-0003-3771-8537], Haid, Mark [0000-0001-6118-1333], Hong, Mun-Gwan [0000-0001-8603-8293], Kennedy, Gwen [0000-0002-9856-3236], Thomas, E Louise [0000-0003-4235-4694], Frost, Gary [0000-0003-0529-6325], Hansen, Tue Haldor [0000-0001-5948-8993], Kaye, Jane [0000-0002-7311-4725], Hattersley, Andrew [0000-0001-5620-473X], Ridderstråle, Martin [0000-0002-3270-9167], Pedersen, Oluf [0000-0002-3321-3972], Hansen, Torben [0000-0001-8748-3831], Schwenk, Jochen M [0000-0001-8141-8449], Rasmussen, Simon [0000-0001-6323-9041], Brunak, Søren [0000-0003-0316-5866], Apollo - University of Cambridge Repository, Epidemiology and Data Science, ACS - Diabetes & metabolism, APH - Health Behaviors & Chronic Diseases, General practice, ACS - Heart failure & arrhythmias, APH - Aging & Later Life, Graduate School, and APH - Methodology
- Subjects
Biomedical Engineering ,Type 2 diabetes ,Bioengineering ,Applied Microbiology and Biotechnology ,Deep Learning ,SDG 3 - Good Health and Well-being ,Diabetes Mellitus, Type 2 ,Machine learning ,Molecular Medicine ,Humans ,Data integration ,IMI DIRECT Consortium ,Systems biology ,Algorithms ,Biotechnology - Abstract
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
- Published
- 2023
- Full Text
- View/download PDF
12. 1361-P: D-Xylose Test as a Biomarker for Glucose Intestinal Absorption in Humans and Minipigs
- Author
-
GOUTCHTAT, REBECCA, primary, MARCINIAK, CAMILLE, additional, CAIAZZO, ROBERT, additional, VERKINDT, HELENE, additional, QUENON, AUDREY, additional, RABIER, THIBAUD, additional, LAPIERE, SARAH, additional, RAVERDY, VIOLETA, additional, HUBERT, THOMAS, additional, and PATTOU, FRANCOIS, additional
- Published
- 2022
- Full Text
- View/download PDF
13. Prospective Study of the Long-Term Effects of Bariatric Surgery on Liver Injury in Patients Without Advanced Disease
- Author
-
Mathurin, Philippe, Hollebecque, Antoine, Arnalsteen, Laurent, Buob, David, Leteurtre, Emmanuelle, Caiazzo, Robert, Pigeyre, Marie, Verkindt, Hélène, Dharancy, Sébastien, Louvet, Alexandre, Romon, Monique, and Pattou, François
- Published
- 2009
- Full Text
- View/download PDF
14. Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration
- Author
-
Wilman, Henry R., Parisinos, Constantinos A., Atabaki-Pasdar, Naeimeh, Kelly, Matt, Thomas, E. Louise, Neubauer, Stefan, Jennison, Christopher, Ehrhardt, Beate, Baum, Patrick, Schoelsch, Corinna, Freijer, Jan, Grempler, Rolf, Graefe-Mody, Ulrike, Hennige, Anita, Dings, Christiane, Lehr, Thorsten, Scherer, Nina, Sihinecich, Iryna, Pattou, Francois, Raverdi, Violeta, Caiazzo, Robert, Torres, Fanelly, Verkindt, Helene, Mari, Andrea, Tura, Andrea, Giorgino, Toni, Bizzotto, Froguel, Philippe, Bonneford, Amelie, Canouil, Mickael, Dhennin, Veronique, Brorsson, Caroline, Brunak, Soren, de Masi, Federico, Gudmundsdóttir, Valborg, Pedersen, Helle, Banasik, Karina, Thomas, Cecilia, Sackett, Peter, Staerfeldt, Hans-Henrik, Lundgaard, Agnete, Koopman, Anitra, Rutters, Femke, Beulens, Joline, Groeneveld, Lenka, Thomas, Louise, Whitcher, Brandon, Mahajan, Anubha, Hingorani, Aroon D., Patel, Riyaz S., Hemingway, Harry, Franks, Paul W., Bell, Jimmy D., Banerjee, Rajarshi, Yaghootkar, Hanieh, Epidemiology and Data Science, APH - Health Behaviors & Chronic Diseases, ACS - Diabetes & metabolism, ACS - Heart failure & arrhythmias, and APH - Aging & Later Life
- Abstract
Background & Aims: Excess liver iron content is common and is linked to the risk of hepatic and extrahepatic diseases. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. Methods: First, we performed a genome-wide association study (GWAS) in 8,289 individuals from UK Biobank, whose liver iron level had been quantified by magnetic resonance imaging, before validating our findings in an independent cohort (n = 1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 25 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 traits and disease outcomes. Results: We identified 3 independent genetic variants (rs1800562 [C282Y] and rs1799945 [H63D] in HFE and rs855791 [V736A] in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (p
- Published
- 2019
- Full Text
- View/download PDF
15. Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients
- Author
-
Margerie, Daniel, Lefebvre, Philippe, Raverdy, Violeta, Schwahn, Uwe, Ruetten, Hartmut, Larsen, Philip, Duhamel, Alain, Labreuche, Julien, Thuillier, Dorothée, Derudas, Bruno, Gheeraert, Céline, Dehondt, Hélène, Dhalluin, Quentin, Alexandre, Jérémy, Caiazzo, Robert, Nesslany, Pamela, Verkindt, Helene, Pattou, François, Staels, Bart, Research & Development [Sanofi Avantis], Sanofi-Aventis Deutschland GmbH, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM), Recherche translationnelle sur le diabète - U 1190 (RTD), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Service de biostatistiques [CHU Lille], Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Chirurgie générale et endocrinienne [CHU Lille], his work was supported by grants from the European Genomic Institute for Diabetes (ANR-10-LABX-46), and «Fonds hospitalier d’aide à l’émergence et à la structuration des activités et des équipes de recherche» (CHU Lille, France). Bart Staels is a holder of an ERC Advanced Grant (694717). Bart Staels and Francois Pattou received funding for this project from Sanofi Aventis Deutschland GmbH. B.S. is supported by the European Research Council (ERC Grant Immunobile, contract 694717)., European Project: 694717,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) ,ImmunoBile(2016), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Service de Biostatistiques [CHRU Lille], Derudas, Marie-Hélène, and Bile acid, immune-metabolism, lipid and glucose homeostasis - ImmunoBile - - H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) 2016-09-01 - 2021-08-31 - 694717 - VALID
- Subjects
Adult ,Male ,lcsh:Internal medicine ,lcsh:QH426-470 ,Gene networks ,Statin ,lcsh:Genetics ,Cholesterol ,Glucose ,Liver ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Homeostasis ,Humans ,[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Female ,Iatrogenic diabetes ,Obesity ,Gene expression ,Hydroxymethylglutaryl-CoA Reductase Inhibitors ,Propensity Score ,Sterol Regulatory Element Binding Protein 1 ,Transcriptome ,lcsh:RC31-1245 ,Research Article ,Human - Abstract
Background Clinical data identified an association between the use of HMG-CoA reductase inhibitors (statins) and incident diabetes in patients with underlying diabetes risk factors such as obesity, hypertension and dyslipidemia. The molecular mechanisms however are unknown. Methods An observational cross-sectional study included 910 severely obese patients, mean (SD) body mass index (BMI) 46.7 (8.7), treated with or without statins (ABOS cohort: a biological atlas of severe obesity). Data and sample collection took place in France between 2006 and 2016. Transcriptomic signatures of statin treatment in human liver obtained from genome-wide transcriptomic profiling of five different statin drugs using microarrays were correlated to clinico-biological phenotypes and also assigned to biological pathways and mechanisms. Patients from the non-statin-users group were matched to patients in the statin users group by propensity score analysis to minimize confounding effects from age, gender, parental familial history of diabetes, BMI, waist circumference, systolic and diastolic blood pressure and use of anti-hypertensive drugs as pre-specified covariates. Results We determined the hepatic, statin-related gene signature from genome-wide transcriptomic profiling in severely obese patients with varying degrees of glucose tolerance and cardio-metabolic comorbidities. One hundred and fifty seven patients on statin treatment in the matched cohort showed higher diabetes prevalence (OR = 2.67; 95%CI, 1.60–4.45; P = 0.0002) and impairment of glucose homeostasis. This phenotype was associated with molecular signatures of increased hepatic de novo lipogenesis (DNL) via activation of sterol regulatory element-binding protein 1 (SREBP1) and concomitant upregulation of the expression of key genes in both fatty acid and triglyceride metabolism. Conclusions A DNL gene activation profile in response to statins is associated with insulin resistance and the diabetic status of the patients. Identified molecular signatures thus suggest that statin treatment increases the risk for diabetes in humans at least in part via induction of DNL. Trial registration NCT01129297. Registered May 242,010 (retrospectively registered). Electronic supplementary material The online version of this article (10.1186/s12920-019-0536-1) contains supplementary material, which is available to authorized users.
- Full Text
- View/download PDF
16. Resolution of MASH with no worsening of fibrosis after bariatric surgery improves 15-year survival: a prospective cohort study.
- Author
-
Lassailly G, Caiazzo R, Goemans A, Chetboun M, Gnemmi V, Labreuche J, Baud G, Verkindt H, Marciniak C, Oukhouya-Daoud N, Ntandja-Wandji LC, Ningarhari M, Leteurtre E, Raverdy V, Dharancy S, Louvet A, Pattou F, and Mathurin P
- Abstract
Objectives: Investigate the consequences of the histological progression of metabolically associated steatohepatitis (MASH) and fibrosis on long-term survival after bariatric surgery., Methods: From 1994 to 2021, 3028 patients at the University Hospital of Lille were prospectively included. Baseline liver biopsies were systematically performed with proposed follow-up biopsies 1 year after surgery, mainly in MASH patients. We evaluated the association of the baseline and 1-year histological progression of MASH and fibrosis status and long-term survival using Cox regression models., Results: At baseline, 2641 patients had a biopsy (89%), including 232 with MASH (8.7%) and 266 (10.8%) with significant fibrosis (grade F2-F4). The median follow-up was 10.1 years. At 1 year, 594 patients had qualitative paired biopsies. Survival was shorter at the 15-year follow-up in patients with baseline MASH, than in those without (hazard ratio (HR), 2.21; 95% confidence interval (CI), 1.38 to 3.53) and in F2-F4 than in F0-F1 (HR, 3.38; (95%CI, 2.24 to 5.10). At the 1-year landmark analysis, compared to patients without baseline MASH, mortality increased in those with persistent MASH and/or if fibrosis worsened (adjusted HR, 2.54 (95% CI, 1.06 to 6.10), but not if MASH resolved without the worsening of fibrosis (adjusted HR, 0.73 (95% CI, 0.28 to 1.87). Similarly, compared to patients without significant fibrosis at baseline, patients with persistent significant fibrosis had increased mortality (adjusted HR, 4.03 [95% CI, 1.86 to 8.72]) but not if fibrosis improved from F2-F4 to F0-F1 (adjusted HR; 1.49; 95%CI, 0.52 to 4.24)., Conclusion: Histological remission of MASH or significant fibrosis improves survival after bariatric surgery., (Copyright © 2024. Published by Elsevier Inc.)
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.