20 results on '"diphenylether"'
Search Results
2. Degradation Potential of the Nonylphenol Monooxygenase of Sphingomonas sp. NP5 for Bisphenols and Their Structural Analogs
- Author
-
Masahiro Takeo, Junichi Akizuki, Aika Kawasaki, and Seiji Negoro
- Subjects
nonylphenol monooxygenase ,bisphenol ,diphenylether ,ipso hydroxylation ,Biology (General) ,QH301-705.5 - Abstract
The nonylphenol-degrading bacterium Sphingomonas sp. strain NP5 has a very unique monooxygenase that can attack a wide range of 4-alkylphenols with a branched side chain. Due to the structural similarity, it can also attack bisphenolic compounds, which are very important materials for the synthesis of plastics and resins, but many of them are known to or suspected to have endocrine disrupting effects to fish and animals. In this study, to clarify the substrate specificity of the enzyme (NmoA) for bisphenolic compounds, degradation tests using the cell suspension of Pseudomonas putida harboring the nonylphenol monooxygenase gene (nmoA) were conducted. The cell suspension degraded several bisphenols including bisphenol F, bisphenol S, 4,4′-dihydroxybenzophenone, 4,4′-dihydroxydiphenylether, and 4,4′-thiodiphenol, indicating that this monooxygenase has a broad substrate specificity for compounds with a bisphenolic structure.
- Published
- 2020
- Full Text
- View/download PDF
3. Efeito de diferentes doses e volumes de calda do herbicida aclonifena no controlo em pré-emergência de infestantes na cultura do grão-de-bico.
- Author
-
Barros, José, Calado, José, Carvalho, Mário, and Duarte, Isabel
- Published
- 2018
- Full Text
- View/download PDF
4. Ochraceopetalin, a Mixed-Biogenetic Salt of Polyketide and Amino Acid Origins from a Marine-Derived Aspergillus ochraceopetaliformis Fungus
- Author
-
Oh Seok Kwon, Ji-Yeon Hwang, Dong-Chan Oh, Ki-Bong Oh, Jung-Ho Lee, Lijuan Liao, Jongheon Shin, and Sung Chul Park
- Subjects
chemistry.chemical_classification ,biology ,010405 organic chemistry ,Stereochemistry ,QH301-705.5 ,Pharmaceutical Science ,Salt (chemistry) ,Fungus ,biology.organism_classification ,01 natural sciences ,Aspergillus ochraceopetaliformis ,0104 chemical sciences ,Amino acid ,marine-derived fungi ,010404 medicinal & biomolecular chemistry ,Polyketide ,chemistry ,Drug Discovery ,diphenylether ,organic salt ,Biology (General) ,Cytotoxicity ,Pharmacology, Toxicology and Pharmaceutics (miscellaneous) ,Structural class - Abstract
Ochraceopetalin (1), a mixed-biogenetic salt compound and its component 2 were isolated from the culture broths of a marine-derived fungus, Aspergillus ochraceopetaliformis. Based on combined spectroscopic and chemical analyses, the structure of 1 was determined to be a sulfonated diphenylether-aminol-amino acid ester guanidinium salt of an unprecedented structural class, while 2 was determined to be the corresponding sulfonated diphenylether. Ochraceopetaguanidine (3), the other guanidine-bearing aminol amino acid ester component, was also prepared and structurally elucidated. Compound 1 exhibited significant cytotoxicity against K562 and A549 cells.
- Published
- 2021
5. Degradation Potential of the Nonylphenol Monooxygenase of Sphingomonas sp. NP5 for Bisphenols and Their Structural Analogs
- Author
-
Junichi Akizuki, Masahiro Takeo, Aika Kawasaki, and Seiji Negoro
- Subjects
0301 basic medicine ,Microbiology (medical) ,endocrine system ,ipso hydroxylation ,Bisphenol ,Structural similarity ,Stereochemistry ,030106 microbiology ,010501 environmental sciences ,01 natural sciences ,Microbiology ,Article ,03 medical and health sciences ,chemistry.chemical_compound ,bisphenol ,Virology ,diphenylether ,Side chain ,lcsh:QH301-705.5 ,reproductive and urinary physiology ,0105 earth and related environmental sciences ,chemistry.chemical_classification ,biology ,urogenital system ,Monooxygenase ,biology.organism_classification ,Pseudomonas putida ,Nonylphenol ,nonylphenol monooxygenase ,Enzyme ,chemistry ,lcsh:Biology (General) ,Bacteria ,hormones, hormone substitutes, and hormone antagonists - Abstract
The nonylphenol-degrading bacterium Sphingomonas sp. strain NP5 has a very unique monooxygenase that can attack a wide range of 4-alkylphenols with a branched side chain. Due to the structural similarity, it can also attack bisphenolic compounds, which are very important materials for the synthesis of plastics and resins, but many of them are known to or suspected to have endocrine disrupting effects to fish and animals. In this study, to clarify the substrate specificity of the enzyme (NmoA) for bisphenolic compounds, degradation tests using the cell suspension of Pseudomonas putida harboring the nonylphenol monooxygenase gene (nmoA) were conducted. The cell suspension degraded several bisphenols including bisphenol F, bisphenol S, 4,4&prime, dihydroxybenzophenone, 4,4&prime, dihydroxydiphenylether, and 4,4&prime, thiodiphenol, indicating that this monooxygenase has a broad substrate specificity for compounds with a bisphenolic structure.
- Published
- 2020
- Full Text
- View/download PDF
6. Development of a controlled release formulation of an indigenous insect growth regulator, DPE-28, a substituted diphenylether, for controlling the breeding of Culex quinquefasciatus.
- Author
-
Kalyanasundaram, M., Mathew, Nisha, Elango, A., and Padmanabhan, V.
- Subjects
- *
CULEX quinquefasciatus , *CONTROLLED release preparations , *MOSQUITO control , *CULEX , *INSECTS - Abstract
Background & objectives: DPE-28, a substituted diphenyl ether [2,6-ditertiarybutyl phenyl-2',4'-dinitro phenyl ether) was reported to exhibit promising insect growth regulating activity against Culex quinquefasciatus, the vector of lymphatic filariasis. A controlled release formulation (CRF) of DPE-28 has been developed to control Cx. quinquefasciatus in its breeding habitats. Toxicity of DPE-28, safety to non-target mosquito predators and the release profile of the CRF of DPE-28 are studied and discussed. Methods: The acute oral and dermal toxicity was tested in male and female Wistar rats as per the Organization for Economic Cooperation and Development (OECD) guidelines 425 and 402 respectively. The toxicity of DPE-28 to non-target predators was tested as per the reported procedure from this laboratory. The CRF of DPE-28 was prepared by following the reported procedure developed at this laboratory earlier. The concentration of DPE-28 released from the CRF was monitored by HPLC by constructing a calibration graph by plotting the peak area in the Y-axis and the concentration of DPE-28 in the X-axis. Results: DPE-28 has been tested for acute oral toxicity and found to be moderately toxic with LD50 value of 1098 mg/kg body weight (b.w). The results of the acute dermal toxicity and skin irritation studies reveal that DPE-28 is safe and non-irritant. DPE-28 when tested at 0.4 mg/litre against non-target mosquito predators did not produce any mortality. The release profile of the active ingredient DPE-28 from the CRF by HPLC technique showed that the average daily release (ADR) of DPE-28 ranged from 0.07 to 5.0 mg/litre during first four weeks. Thereafter the matrix started eroding and the ADR ranged from 5 to 11 mg/litre during the remaining 5 wk. The cumulative release of active ingredient showed that > 90 per cent of the active ingredient was released from the matrix. Interpretation & conclusions: The controlled release matrix of DPE-28 was thus found to inhibit the adult emergence (>80%) of Cx. quinquefasciatus for a period of nine weeks. The CRF of DPE-28 may play a useful role in field and may be recommended for mosquito control programme after evaluating the same under field conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2011
7. Effect of calcination temperature on the catalytic activity of zirconia-supported heteropoly acids
- Author
-
Devassy, Biju M. and Halligudi, S.B.
- Subjects
- *
PETROLEUM refining , *RAMAN spectroscopy , *CHEMICAL reactions , *SPECTRUM analysis - Abstract
Abstract: Zirconia-supported silicotungstic acid (15% STA) catalyst with different calcination temperatures (600–850°C) was prepared by suspending zirconium oxyhydroxide in methanol solution of STA followed by drying and calcination. These catalysts were characterized by XRD, FTIR pyridine adsorption and DRUV–vis spectroscopy. The catalysts showed both Brønsted as well as Lewis acidity and 15% STA on zirconia calcined at 750°C (15 SZ-750) had the highest Brønsted acidity. Characterization of 15 SZ-750 catalyst by Raman spectroscopy showed the presence of zirconia-anchored mono-oxotungstate as the major tungsten species present in this catalyst. These catalysts were used in benzoylation of veratrole with benzoic anhydride and 15 SZ-750 catalyst showed the highest activity. For catalyst with support calcined at different temperatures before HPA impregnation, catalytic activity decreases as the support calcination temperature increases due to the decrease in Brønsted acidity. Comparison of the catalytic activity of 15 SZ-750 with that of zirconia-supported phosphotungstic acid (15%, calcined at 750°C, 15 PZ-750) in benzoylation of veratrole with benzoic anhydride, acylation of anisole with acetic anhydride and in alkylation of diphenylether with 1-dodecene showed that 15 SZ-750 catalyst has higher activity and deactivation resistance due to its higher Brønsted acidity. The deactivated catalyst could be regenerated by calcination without appreciable loss in activity. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
8. Die bakterielle Fettsäurebiosynthese als Zielobjekt zur Entwicklung langsam bindender Inhibitoren und zur Charakterisierung von Protein-Protein-Wechselwirkungen
- Author
-
Eltschkner, Sandra
- Subjects
Fettsäurestoffwechsel ,Verweildauer ,Diphenylether ,ddc:572 ,Arzneimitteldesign - Abstract
A continuous arms race between the development of novel antibiotics and the evolution of corresponding resistance mechanisms in bacteria has been observed, since antibiotic agents like arsphenamines (e.g. Salvarsan, developed by Paul Ehrlich [1]), sulphonamides (e.g. Prontosil, Gerhard Domagk [2]) and penicillin (Alexander Fleming [3]) were first applied to effectively cure bacterial infections in the early 20th century. The rapid emergence of resistances in contrast to the currently lagging discovery of antibiotics displays a severe threat to human health. Some serious infectious diseases, such as tuberculosis or melioidosis, which were either thought to be an issue only in Third-World countries in case of tuberculosis, or regionally restricted with respect to melioidosis, are now on the rise to expand to other areas. In contrast, methicillin-resistant Staphylococcus aureus (MRSA) is already present in clinical setups all over the world and causes severe infections in immunocompromised patients. Thus, there is an urgent need for new and effective antimicrobial agents, which impair vital functions of the pathogen’s metabolism. One central metabolic pathway is represented by the bacterial fatty-acid synthesis pathway (FAS II), which is essential for the synthesis of long and branched-chain fatty acids, as well as mycolic acids. These substances play a major role as modulating components of the properties of the most important protective barrier – the cell envelope. The integrity of the bacterial cell wall and the associated membrane(s) is crucial for cell growth and for protection against physical strain, intrusion of antibiotic agents and regulation of uptake of ions and other small molecules. Thus, this central pathway represents a promising target for antibiotic action against pathogens to combat infectious diseases. The last and rate-limiting step is catalysed by the trans-2-enoyl-ACP reductase (ENR) FabI or InhA (in mycobacteria), which has been demonstrated to be a valuable target for drug design and can be addressed, amongst others, by diphenyl ether (DPE) compounds, derived from triclosan (TCL) – the first one of this class which was discovered to bind to ENR enzymes [4, 5]. Based on this scaffold, inhibitors containing different combinations of substituents at crucial positions, as well as a novel type of substituent at position five were investigated regarding their binding behaviour towards the Burkholderia pseudomallei and Mycobacterium tuberculosis ENR enzymes bpFabI and InhA, respectively, by structural, kinetic and in-vivo experiments. Generally, substitution patterns modulate the association and dissociation velocities of the different ENR inhibitors in the context of the two-step slow-onset binding mechanism, which is observed for both enzymes. These alterations in the rapidity of complex formation and decomposition have a crucial impact on the residence time of a compound and hence, on the pharmacokinetic properties of potential drug candidates. For example, the substituents at the 2’-position of the DPE scaffold influence the ground- and transition state stability during the binding process to bpFabI, whereas 4’-substituents primarily alter the transition state [6]. The novel triazole group attached to the 5-position of the scaffold, targeting the hydrophobic part of the substrate-binding pocket in InhA, significantly enhances the energy barrier of the transition state of inhibitor binding [7] and decelerates the association- as well as the dissociation processes. Combinations with different substituents at the 2’-position can enhance or diminish this effect, e.g. by ground-state stabilisation, which will result in an increased residence time of the respective inhibitor on InhA. Further structural investigations carried out in this work, confirm the proposed binding mode of a customised saFabI inhibitor [8], carrying a pyridone moiety on the DPE scaffold to expand interactions with the protein environment. Structural and preliminary kinetic data confirm the binding of the same inhibitor to InhA in a related fashion. Comparisons with structures of the ENR inhibitor AFN-1252 [9] bound to ENR enzymes from other organisms, addressing a similar region as the pyridone-moiety of the DPE inhibitor, suggest that also the DPE inhibitor bears the potential to display binding to homologues of saFabI and InhA and may be optimised accordingly. Both of the newly investigated substituents, the pyridone moiety at the 4’-position as well as the 5-triazole substituent, provide a good starting point to modify the DPE scaffold also towards improved kinetic properties against ENR enzymes other than the herein studied and combining both groups on the DPE scaffold may have beneficial effects. The understanding of the underlying binding mechanism is a crucial factor to promote the dedicated design of inhibitors with superior pharmacokinetic characteristics. A second target for a structure-based drug-design approach is the interaction surface between ENR enzymes and the acyl-carrier protein (ACP), which delivers the growing acyl chain to each distinct enzyme of the dissociated FAS-II system and presumably recognises its respective interaction partner via electrostatic contacts. The interface between saACP and saFabI was investigated using different approaches including crosslinking experiments and the design of fusion constructs connecting the ACP and the FabI subunits via a flexible linker region of varying lengths and compositions. The crosslinking studies confirmed a set of residues to be part of the contact interface of a previously proposed complex model [10] and displayed high crosslinking efficiency of saACP to saFabI when mutated to cysteine residues. However, crystals of the complex obtained from either the single components, or of the fusion constructs usually displayed weak diffraction, which supports the assumption that complex formation is highly transient. To obtain ordered crystals for structural characterisation of the complex it is necessary to trap the complex in a fixed state, e.g. by a high-affinity substrate attached to ACP [11], which abolishes rapid complex dissociation. For this purpose, acyl-coupled long-residence time inhibitors might be a valuable tool to elucidate the detailed architecture of the ACP-FabI interface. This may provide a novel basis for the development of inhibitors that specifically target the FAS-II biosynthesis pathway., Seit Beginn der Anwendung antibiotischer Substanzen wie Arsphenaminen, z.B. Salvarsan, entwickelt von Paul Ehrlich [1], Sulfonamiden, z.B. Prontosil, dessen antibakterielle Wirksamkeit durch Gerhard Domagk nachgewiesen wurde [2], oder des von Alexander Fleming entdeckten Penicillins [3] zur effektiven Bekämpfung von Infektionskrankheiten Anfang des 20. Jahrhunderts findet ein kontinuierliches Wettrüsten zwischen der Entstehung von Antibiotikaresistenzen in Bakterien und der Entwicklung neuer Antibiotika statt. Vor allem die zügige Entstehung von Resistenzen im Gegensatz zum eher stockenden Fortschritt der Entdeckung neuer Antibiotika stellt ein ernstzunehmendes Risiko für die menschliche Gesundheit dar. Einige stark lebensbedrohliche Infektionskrankheiten, darunter Tuberkulose und Melioidose, erfahren dadurch eine erhöhte Verbreitung. Ein Anstieg der Zahl der Tuberkuloseerkrankungen in Gebieten, in denen die Krankheit bereits als ausgerottet galt, beispielsweise in Europa; oder im Falle der Melioidose, eine Verbreitung in Gebiete, in denen die Krankheitserreger natürlicherweise nicht vorkommen; sind u.a. die Folgen fehlender Wirkstoffe zur Bekämpfung resistenter Stämme. Methicillinresistente Staphylococcus-aureus- (MRSA-) Stämme sind hingegen bereits fast weltweit in Krankenhäusern verbreitet und gelten dort als Quelle schwerer Infektionen, die vor allem für Patienten mit geschwächtem Immunsystem eine ernsthafte Bedrohung darstellen. Die mannigfaltigen Vorkommen resistenter Erreger und die eingeschränkten Behandlungsmöglichkeiten dadurch verursachter Infektionen machen die Entwicklung neuer, wirksamer Antibiotika dringend notwendig. Ein zentraler Stoffwechselweg der Bakterien ist die Fettsäurebiosynthese II, die im Hinblick auf die Herstellung lang- und verzweigtkettiger Fettsäuren sowie von Mykolsäuren essentiell ist. Die Zusammensetzung der Fettsäuren trägt maßgeblich zur Funktionsfähigkeit der unentbehrlichen Schutzbarriere der Zelle – nämlich der Zellhülle – bei. Eine intakte Zellwand und deren assoziierte Membranen schützen die Zelle vor physikalischem Stress, vor dem Eindringen antibiotischer Substanzen und regulieren die Aufnahme anderer Kleinmoleküle und Ionen. Genau aus diesem Grunde stellt die Fettsäurebiosynthese ein attraktives Ziel für die Entwicklung von Antibiotika dar. Die Enoyl-ACP-Reduktase (ENR), welche den letzten und geschwindigkeitsbestimmenden Schritt des Synthesezyklus katalysiert, wurde als hervorragendes Zielmolekül identifiziert und wird unter anderem von Diphenylethern gehemmt. Diese Verbindungen sind von Triclosan abgeleitet, dessen Bindung an ENR-Enzyme als erstem Vertreter dieser Stoffklasse nachgewiesen werden konnte [4, 5]. Basierend auf dem Diphenylethergrundgerüst von Triclosan wurden Inhibitoren mit unterschiedlichen Substitutionsmustern bezüglich ihrer Bindungseigenschaften an die ENR-Enzyme von Burkholderia pseudomallei (bpFabI) und Mycobacterium tuberculosis (InhA) untersucht. Kritische Positionen dieses Grundgerüstes wurden mit verschiedenen, chemischen Gruppen versehen und die Bindung an diese beiden Enzyme anschließend strukturell, kinetisch und am lebenden Organismus charakterisiert. In beiden Fällen üben die Substitutionsmuster einen beträchtlichen Einfluss auf die Assoziations- und Dissoziationsgeschwindigkeiten der verschiedenen Inhibitoren im Rahmen des verlangsamten Zweischrittassoziationsmechanismus aus, welche wiederum die Verweildauer des Inhibitors am Enzym und dessen pharmakokinetische Eigenschaften bestimmen. Die Beschaffenheit der 2‘-Substituenten beeinflusst beispielsweise die Stabilität des Grund- sowie des Übergangszustandes im Bindungsgeschehen an bpFabI, wohingegen 4‘-Substituenten hauptsächlich zu Stabilitätsänderungen im Übergangszustand beitragen [6]. Die Einführung des Triazolsubstituenten an der 5-Position des Diphenylethergerüsts führt zu einer signifikanten Erhöhung der Energiebarriere des Übergangszustandes im Bindungsprozess an InhA [7], was im Rückschluss zu einer ebenfalls verlangsamten Dissoziation des Enzym-Inhibitor-Komplexes führt. Zusätzlich wird dieser Effekt durch die Beschaffenheit des entsprechenden Substituenten an der 2‘-Position noch verstärkt oder abgeschwächt. Dies erfolgt beispielsweise durch eine Stabilisierung des Grundzustandes und eine daraus resultierende, verlängerte Verweildauer des Inhibitors am Enzym. Weitere, strukturelle Untersuchungen im Rahmen dieser Arbeit konnten den vorgeschlagenen Bindungsmodus [8] des neuartigen, speziell auf das ENR-Enzym von Staphylococcus aureus (saFabI) zugeschnittenen Inhibitors „55JS“ (auch „SKTS1“) bestätigen. Dieser Diphenyletherinhibitor besitzt an der 4‘-Position einen Pyridonring, welcher die Wechselwirkungen mit dem Enzym verstärken soll. Aus den strukturellen und vorläufigen, kinetischen Daten geht hervor, dass dieser Inhibitor ebenfalls und in ähnlicher Weise an InhA bindet. Außerdem legt ein Vergleich mit Komplexstrukturen verschiedener ENRs in Verbindung mit AFN-1252 [9] die Vermutung nahe, dass auch 55JS an weitere ENR-Homologe binden könnte; denn jener Teil des AFN-1252-Inhibitors, der sich räumlich mit dem Pyridonring von 55JS überlagert, geht mit derselben Region im Protein ähnliche Wechselwirkungen ein. Es ist daher möglich, dass dieser Inhibitor das Potential birgt, durch entsprechende Optimierung als Wirkstoff gegen andere Pathogene zum Einsatz zu gelangen. Beide dieser neuartigen, funktionellen Gruppen, die Triazol- und die Pyridongruppe, stellen einen guten Ansatzpunkt für die Weiterentwicklung von Diphenylethern bezüglich verbesserter kinetischer Eigenschaften gegenüber ENR-Enzymen dar. Ein weiterer, interessanter Ansatz für die strukturbasierte Wirkstoffentwicklung ist durch die Interaktionsfläche zwischen ENR-Enzymen und dem Acyl-Carrier-Protein (ACP) gegeben. ACP transportiert die naszierende Acylkette von einem zum nächsten Enzym des dissoziierten Fettsäurebiosynthesezyklus, welche es wahrscheinlich anhand elektrostatischer Interaktionen erkennt. Die Kontaktfläche zwischen saACP und saFabI wurde hier mittels verschiedener Ansätze untersucht, die sowohl Crosslinking-Experimente als auch die Generierung von Fusionsproteinen umfassten. In den verschiedenen Fusionskonstrukten wurden das ACP- und das ENR-Protein durch eine flexible Aminosäurekette unterschiedlicher Längen und Zusammensetzungen miteinander verbunden. Durch die Crosslinking-Experimente konnten Aminosäuren identifiziert werden, welche einen Teil einer vorgeschlagenen Interaktionsfläche [10] ausmachen und tatsächlich eine hohe Vernetzungseffizienz aufwiesen. Proteinkristalle des Komplexes, die entweder beide Einzelkomponenten oder das Fusionsprotein enthielten, zeigten jedoch nur schwache Beugungsmuster. Diese Beobachtung deckt sich mit der Annahme, dass die Komplexbildung äußerst kurzlebig ist. Die intrinsische Flexibilität beider Proteine erhöht zusätzlich die Schwierigkeit, wohlgeordnete Kristalle zu erhalten. Es wird deshalb notwendig sein, den Komplex in einem fixierten Zustand einzufangen. Die Verwendung eines hochaffinen Substrates, welches die Dissoziation des Komplexes unterbindet, beispielsweise ein acylgekoppelter Inhibitor [11] mit langer Verweildauer am Enzym, könnte hier von großem Nutzen sein und es damit erlauben eine detaillierte Kenntnis der ACP-FabI-Interaktionsfläche zu erhalten, die neue Perspektiven für eine gezielte Entwicklung von Inhibitoren der Fettsäurebiosynthese II eröffnen könnten.
- Published
- 2020
9. Ochraceopetalin, a Mixed-Biogenetic Salt of Polyketide and Amino Acid Origins from a Marine-Derived Aspergillus ochraceopetaliformis Fungus.
- Author
-
Park, Sung Chul, Lee, Jung-Ho, Hwang, Ji-Yeon, Kwon, Oh-Seok, Liao, Lijuan, Oh, Dong-Chan, Oh, Ki-Bong, and Shin, Jongheon
- Abstract
Ochraceopetalin (1), a mixed-biogenetic salt compound and its component 2 were isolated from the culture broths of a marine-derived fungus, Aspergillus ochraceopetaliformis. Based on combined spectroscopic and chemical analyses, the structure of 1 was determined to be a sulfonated diphenylether-aminol-amino acid ester guanidinium salt of an unprecedented structural class, while 2 was determined to be the corresponding sulfonated diphenylether. Ochraceopetaguanidine (3), the other guanidine-bearing aminol amino acid ester component, was also prepared and structurally elucidated. Compound 1 exhibited significant cytotoxicity against K562 and A549 cells. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
10. Decomposition of lignin model compounds by Lewis acid catalysts in water and ethanol
- Author
-
Evgeny A. Pidko, B Burcu Güvenatam, Emiel Emiel Hensen, Ehj Heeres, Chemical Technology, and Inorganic Materials & Catalysis
- Subjects
Ether ,Alkylation ,Lignin ,Catalysis ,MECHANISMS ,chemistry.chemical_compound ,Hydrolysis ,COAL ,Organic chemistry ,Lewis acids and bases ,BENZYL PHENYL ETHER ,Physical and Theoretical Chemistry ,Methylene ,LINKAGES ,KINETICS ,Ethanol ,CLEAVAGE ,Process Chemistry and Technology ,Diphenyl ether ,Water ,Lewis acid salt ,Model compound ,Supercritical fluid ,REACTIVITY ,chemistry ,DIPHENYLETHER ,SUPERCRITICAL WATER - Abstract
The conversion of benzyl phenyl ether, diphenyl ether, diphenyl methane and biphenyl as representative model compounds for alpha-O-4, 5-O-4, alpha(1) (methylene bridges) and 5-5' lignin linkages was investigated. We compared the use of metal chlorides and acetates. The reactions were studied in sub- and supercritical water and supercritical ethanol between 300 and 400 degrees C. At low temperature in water, Lewis acids mainly catalyzed condensation of hydrolysis products of the dimeric model compounds. At higher temperature, mono-aromatic products were formed. The yield of monomeric products was higher in ethanol than in water. The preference for ethanol is due to extensive alkylation of the mono-aromatic products, which inhibits their condensation into larger products. The highest yields of deoxygenated mono-aromatics were obtained using Lewis acid catalysts at 400 degrees C in supercritical ethanol. The preferred Lewis acid catalysts were Fe, Cu, Ni and Al chlorides. (C) 2015 Elsevier B.V. All rights reserved.
- Published
- 2015
- Full Text
- View/download PDF
11. Degradation Potential of the Nonylphenol Monooxygenase of Sphingomonas sp. NP5 for Bisphenols and Their Structural Analogs.
- Author
-
Takeo, Masahiro, Akizuki, Junichi, Kawasaki, Aika, and Negoro, Seiji
- Subjects
NONYLPHENOL ,PSEUDOMONAS putida ,SPHINGOMONAS ,ENZYME specificity ,CELL suspensions ,ENDOCRINE glands ,BISPHENOL A ,BISPHENOLS - Abstract
The nonylphenol-degrading bacterium Sphingomonas sp. strain NP5 has a very unique monooxygenase that can attack a wide range of 4-alkylphenols with a branched side chain. Due to the structural similarity, it can also attack bisphenolic compounds, which are very important materials for the synthesis of plastics and resins, but many of them are known to or suspected to have endocrine disrupting effects to fish and animals. In this study, to clarify the substrate specificity of the enzyme (NmoA) for bisphenolic compounds, degradation tests using the cell suspension of Pseudomonas putida harboring the nonylphenol monooxygenase gene (nmoA) were conducted. The cell suspension degraded several bisphenols including bisphenol F, bisphenol S, 4,4′-dihydroxybenzophenone, 4,4′-dihydroxydiphenylether, and 4,4′-thiodiphenol, indicating that this monooxygenase has a broad substrate specificity for compounds with a bisphenolic structure. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
12. The Effects of Aclonifen Treatment Times on the Critical Concentration Values in The Leaves of Blackgrass [Alopecurus Myosuroides Huds. (Poaceae)]
- Author
-
Özgür Kilinc, Özgür Kıvılcım Kılınç, and Niğde Ömer Halisdemir Üniversitesi
- Subjects
Alopecurus myosuroides ,lcsh:S ,Biology ,biology.organism_classification ,lcsh:S1-972 ,Gıda Bilimi ve Teknolojisi ,Critical concentration ,lcsh:Agriculture ,Plant development ,Animal science ,Ziraat ,Dry weight ,Aclonifen ,Diphenylether ,Botany ,Selectivity ,Poaceae ,Ortak Disiplinler ,Herbicide ,lcsh:Agriculture (General) - Abstract
Bu çalışma, çıkış öncesi ve çıkış sonrası kullanılan bir herbisit olan aclonifen’in farklı uygulama zamanının tilki kuyruğu (Alopecurus myosuroides Huds.) mücadelesinde %100 başarı sağlayan Kritik Konsantrasyon Değerlerine olan etkisini belirlemek amacıyla gerçekleştirilmiştir. A. myosuroides bitkileri sera koşullarında, saksılarda yetiştirilmiştir. Araştırmalarda, bitki bünyesindeki herbisit konsantrasyonunu hassas bir şekilde ölçmek için aclonifen süspansiyon konsantre (SC) formülasyonu Challenge 600’e 14C-aclonifen ilave edilmiş ve önerilen doz (270 g e.m. da-1 ) uygulanmıştır. Ekimler 2011 Mart-Nisan aylarında yapılmış, denemelerin kurulduğu ilk gün çıkış öncesi, takip eden 20’inci gün erken çıkış sonrası ve 40’ıncı gün geç çıkış sonrası uygulama yapılmıştır. Uygulamaları takip eden 10’uncu gün, bitkilerde görülen herbisit belirtileri gözlemlenmiş; yaprak yaş ve kuru ağırlıkları kaydedilmiştir. Sıvı sintilasyon cihazı kullanılarak her bir bitki yaprağındaki toplam radyoaktivite miktarı dpm cinsinden ölçülerek, aclonifen konsantrasyonu belirlenmiştir. Deneme bulguları, aclonifen’in önerilen dozunun A. myosuroides yapraklarında belirlenen aclonifen kritik konsantrasyonu çıkış öncesi için 1,58 ± 0,15 nmol/mg kuru ağırlık, erken çıkış ve geç çıkış sonrası uygulamalarında ise sırasıyla, 3,04 ± 0,27 ve 0,94 ± 0,15 nmol/mg kuru ağırlıktır. Deneme sonuçları, aclonifen’in önerilen dozu ile hem çıkış öncesi hem de A. myosuroides’in 1-2 yapraklı evresine kadar yapılacak erken çıkış sonrası uygulamalarında %100 oranında kontrol sağladığı, fakat bitkinin 3-4 yapraklı evresinden sonra yapılan uygulamalarda bitki gelişimini yavaşlatmasına rağmen etkisiz olduğu saptanmıştır., The objective of this study was to determine the effect of different treatments times of aclonifen, which is used as pre- and post-emergence herbicide in the control of blackgrass [Alopecurus myosuroides Huds. (Poaceae)] on the critical concentration values resulting in 100% success. The plants of A. myosuroides were grown on pots under greenhouse conditions. In the study, to determine the herbicide contraction on the plant tissues accurately, 14Caclonifen was added to the aclonifen suspension concentrate (SC) Challenge 600 and suggested dose (270 g e.m. da-1 ) was treated. The trials were initiated in march and april of 2011 and the treatments were applied the first (pre-emergence), 20th (early post-emergence) and 40th (later post-emergence) days. 10-day after each treatment, the symptoms were evaluated; and, the fresh and dry weights of the leaves were recovered. The aclonifen concentration on the fresh and dry leave samples were determined by the measuring the total radioactivity amount in dpm using liquid scintillation analyzer. The results of the trials indicated that the suggested doses of aclonifen critical concentration on the A. myosuroides leaves were: 1.58 ± 0.16 nmol/mg dry weight for pre-emergence; 3.04 ± 1.57 and 0.94 ± 0.81 nmol/mg dry weight for early and late post-emergence, respectively. It was also determined that the treatment of aclonifen with suggested dose when applied either as pre-emerge or as early post emergence until the plants reach 1-2 leaf stage before emergence or until 1-2 leaf stage result in 100% control; however, the treatments applied after 3-4 leaf stage are not successful although they result in delays of plant development.
- Published
- 2015
13. Competitive interaction of three peroxidizing herbicides with the binding of 3H acifluorfen to corn etioplast membranes
- Author
-
René Scalla, Michel Matringe, René Mornet, Rina Varsano, Noël Magnin, Phytopharmacie et Biochimie des Iteractions Cellulaires (PBIC), Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD), and ProdInra, Migration
- Subjects
Niacinamide ,0106 biological sciences ,Oxidoreductases Acting on CH-CH Group Donors ,Stereochemistry ,Biophysics ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Acifluorfen ,Binding, Competitive ,Zea mays ,01 natural sciences ,Biochemistry ,03 medical and health sciences ,chemistry.chemical_compound ,Etioplast ,Structural Biology ,Diphenylether ,Genetics ,Binding site ,[SDV.BC] Life Sciences [q-bio]/Cellular Biology ,Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,chemistry.chemical_classification ,Oxadiazoles ,0303 health sciences ,Binding Sites ,Trifluoromethyl ,Herbicides ,Cell Membrane ,Cell Biology ,Plants ,Binding ,Protoporphyrinogen IX ,Protoporphyrinogen oxidase ,Enzyme ,Membrane ,chemistry ,Diuron ,Nitrobenzoates ,Pyrazoles ,Herbicide ,Oxidoreductases ,010606 plant biology & botany - Abstract
The specific binding of the herbicide acifluorfen 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid to corn etioplast membranes is competitively inhibited by protoporphyrinogen IX, the substrate of protoporphyrinogen oxidase. Three other peroxidizing molecules, oxadiazon [5-ter-butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-one], LS 82556 [(S)3-N-(methylbenzyl)carbamoyl-5-propionyl-2,6-lutidine], and M&B 39279 [5-amino-4-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazol], also compete with acifluorfen for its binding site. The four herbicides thus bind to the same site, or to closely located sites, on the enzyme protoporphyrinogen oxidase.
- Published
- 1990
14. Discovery and Optimization of Tetramethylpiperidinyl Benzamides as Inhibitors of EZH2.
- Author
-
Nasveschuk CG, Gagnon A, Garapaty-Rao S, Balasubramanian S, Campbell R, Lee C, Zhao F, Bergeron L, Cummings R, Trojer P, Audia JE, Albrecht BK, and Harmange JC
- Abstract
The identification and development of a novel series of small molecule Enhancer of Zeste Homologue 2 (EZH2) inhibitors is described. A concise and modular synthesis enabled the rapid development of structure-activity relationships, which led to the identification of 44 as a potent, SAM-competitive inhibitor of EZH2 that dose-dependently decreased global H3K27me3 in KARPAS-422 lymphoma cells.
- Published
- 2014
- Full Text
- View/download PDF
15. Protox-Resistant Common Waterhemp (Amaranthus rudis) Response to Herbicides Applied at Different Growth Stages
- Author
-
Al-Khatib, Kassim and Peterson, Dallas E.
- Published
- 2006
16. Development of a controlled release formulation of an indigenous insect growth regulator, DPE-28, a substituted diphenylether, for controlling the breeding of Culex quinquefasciatus
- Author
-
Kalyanasundaram, M., Mathew, N., Elango, A., and Vasantha Padmanabhan
- Subjects
Male ,Insecticides ,mosquito larval control ,Mosquito Control ,Phenyl Ethers ,DPE-28 ,Breeding ,Insect Vectors ,Rats ,Juvenile Hormones ,Lethal Dose 50 ,Culex ,insect growth regulator ,Delayed-Action Preparations ,Larva ,diphenylether ,Controlled release formulation ,Animals ,Humans ,Original Article ,Female ,Rabbits ,Rats, Wistar - Abstract
Background & objectives: DPE-28, a substituted diphenyl ether (2,6-ditertiarybutyl phenyl-2’,4’-dinitro phenyl ether) was reported to exhibit promising insect growth regulating activity against Culex quinquefasciatus, the vector of lymphatic filariasis. A controlled release formulation (CRF) of DPE-28 has been developed to control Cx. quinquefasciatus in its breeding habitats. Toxicity of DPE-28, safety to non-target mosquito predators and the release profile of the CRF of DPE-28 are studied and discussed. Methods: The acute oral and dermal toxicity was tested in male and female Wistar rats as per the Organization for Economic Cooperation and Development (OECD) guidelines 425 and 402 respectively. The toxicity of DPE-28 to non-target predators was tested as per the reported procedure from this laboratory. The CRF of DPE-28 was prepared by following the reported procedure developed at this laboratory earlier. The concentration of DPE-28 released from the CRF was monitored by HPLC by constructing a calibration graph by plotting the peak area in the Y-axis and the concentration of DPE-28 in the X-axis. Results: DPE-28 has been tested for acute oral toxicity and found to be moderately toxic with LD50 value of 1098 mg/kg body weight (b.w). The results of the acute dermal toxicity and skin irritation studies reveal that DPE-28 is safe and non-irritant. DPE-28 when tested at 0.4 mg/litre against non-target mosquito predators did not produce any mortality. The release profile of the active ingredient DPE-28 from the CRF by HPLC technique showed that the average daily release (ADR) of DPE-28 ranged from 0.07 to 5.0 mg/litre during first four weeks. Thereafter the matrix started eroding and the ADR ranged from 5 to 11 mg/litre during the remaining 5 wk. The cumulative release of active ingredient showed that > 90 per cent of the active ingredient was released from the matrix. Interpretation & conclusions: The controlled release matrix of DPE-28 was thus found to inhibit the adult emergence (>80%) of Cx. quinquefasciatus for a period of nine weeks. The CRF of DPE-28 may play a useful role in field and may be recommended for mosquito control programme after evaluating the same under field conditions.
17. Effect of Imazamox, Fomesafen, and Acifluorfen Soil Residue on Rotational Crops
- Published
- 1998
18. Soybean [Glycine max (L.)] Response to Lactofen
- Published
- 1993
19. Influence of Crop Canopy, Weed Maturity, and Rainfall on Acifluorfen Activity
- Published
- 1984
20. Protox-resistant common waterhemp (Amaranthus rudis) response to herbicides applied at different growth stages
- Author
-
Falk, Jeanne S., Shoup, Douglas E., Al-Khatib, Kassim, and Peterson, Dallas E.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.