A number of potential stressors are present in captive environments and it is critically important to identify them in order to improve health and welfare in ex situ animal populations. In this study, we investigated the adrenocortical activity of a colony of African penguins hosted in an immersive zoo in Italy, with respect to the presence of visitors and local microclimatic conditions, using the non-invasive method of assessing faecal glucocorticoid metabolites (FGMs). The penguins’ exhibit is a large naturalistic outdoor enclosure, which closely reproduces the natural habitat of this species. Data collection took place from the beginning of June to the end of August 2014, during the period of maximum flow of visitors. We carried out 12 sampling periods, each involving 2 consecutive days; during the first day we counted the visitors and we registered the meteorological data, and on the second day, we collected the faecal samples, which amounted to a total of 285 faecal samples. Our results showed that the number of visitors did not influence the adrenocortical activity of the African penguins. Conversely, the local microclimatic conditions did influence the physiological stress on these birds. We found that an increase of the daily mean temperature induced a significant increase in FGM concentrations, although humidity and wind speed had a moderating effect on temperature and reduced the heat-induced stress. Moreover, we calculated two climatic indices, commonly used to assess the thermal discomfort in animals, namely the THI (Temperature-Humidity Index) and WCI (Wind Chill Index), and we detected a positive relationship between their values and the FGM levels, demonstrating that these indices could be useful indicators of weather discomfort in African penguins. Our study shows that the simulating naturalistic conditions could have significant benefits for zoo animals, such as reducing the negative effect of visitors. Nevertheless, it should be taken into account where the zoological facility is located and if the local microclimatic conditions are compatible with the hosted species, to ensure that they do not differ greatly from their natural habitat.