1. Stripe Noise Elimination with a Novel Trend Repair Method for Push-Broom Thermal Images.
- Author
-
Zhang, Zelin, Li, Hua, Du, Yongming, Chen, Yao, Zhao, Guoxiang, Bian, Zunjian, Cao, Biao, Xiao, Qing, and Liu, Qinhuo
- Subjects
THERMOGRAPHY ,REMOTE sensing ,SIGNAL-to-noise ratio ,LANDSAT satellites ,COLUMNS ,PIXELS - Abstract
Stripe noise is a general phenomenon in original remote sensing images that both degrades image quality and severely limits its quantitative application. While the classical statistical method is effective in correcting common stripes caused by inaccurately calibrating relative gains and offsets between detectors, it falls short in correcting other nonlinear stripe noises originating from subtle nonlinear changes or random contamination within the same detector. Therefore, this paper proposes a novel trend repair method based on two normal columns directly adjacent to a defective column to rectify the trend by considering the geospatial structure of contaminated pixels, eliminating residual stripe noise evident in level 0 (L0) remote sensing images after histogram matching. GF5-02 VIMI (Gaofen5-02, visual and infrared multispectral imager) images and simulated Landsat 8 thermal infrared sensor (TIRS) images deliberately infused with stripe noise are selected to test the new method and two other existing methods, the piece-wise method and the iterated weighted least squares (WLS) method. The effectiveness of these three methods is reflected by streaking metrics (Streaking), structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and improvement factor (IF) on the uniformity, structure, and information content of the corrected GF5-02 VIMI images and by the accuracy of the corrected simulated Landsat 8 TIRS images. The experimental results indicate that the trend repair method proposed in this paper removes nonlinear stripe noise effectively, making the results of IF > 20. The remaining indicators also show satisfactory results; in particular, the mean accuracy derived from the simulated image remains below a digital number (DN) of 15, which is far superior to the other two methods. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF