59 results on '"Carpenter MG"'
Search Results
2. Improving impaired balance function: real-time versus carry-over effects of prosthetic feedback
- Author
-
Allum, JHJ, Carpenter, MG, Horslen, BC, Davis, JR, Honegger, F, Tang, KS, Kessler, P, Allum, JHJ, Carpenter, MG, Horslen, BC, Davis, JR, Honegger, F, Tang, KS, and Kessler, P
- Published
- 2011
3. Trunk muscle responses to balance perturbations in paraplegics
- Author
-
Bjerkefors, Anna, Carpenter, MG, Cresswell, AG, Thorstensson, Alf, Bjerkefors, Anna, Carpenter, MG, Cresswell, AG, and Thorstensson, Alf
4. Are cervical multifidus muscles active during whiplash and startle? An initial experimental study.
- Author
-
Siegmund GP, Blouin JS, Carpenter MG, Brault JR, Inglis JT, Siegmund, Gunter P, Blouin, Jean-Sébastien, Carpenter, Mark G, Brault, John R, and Inglis, J Timothy
- Abstract
Background: The cervical multifidus muscles insert onto the lower cervical facet capsular ligaments and the cervical facet joints are the source of pain in some chronic whiplash patients. Reflex activation of the multifidus muscle during a whiplash exposure could potentially contribute to injuring the facet capsular ligament. Our goal was to determine the onset latency and activation amplitude of the cervical multifidus muscles to a simulated rear-end collision and a loud acoustic stimuli.Methods: Wire electromyographic (EMG) electrodes were inserted unilaterally into the cervical multifidus muscles of 9 subjects (6M, 3F) at the C4 and C6 levels. Seated subjects were then exposed to a forward acceleration (peak acceleration 1.55 g, speed change 1.8 km/h) and a loud acoustic tone (124 dB, 40 ms, 1 kHz).Results: Aside from one female, all subjects exhibited multifidus activity after both stimuli (8 subjects at C4, 6 subjects at C6). Neither onset latencies nor EMG amplitude varied with stimulus type or spine level (p > 0.13). Onset latencies and amplitudes varied widely, with EMG activity appearing within 160 ms of stimulus onset (for at least one of the two stimuli) in 7 subjects.Conclusion: These data indicate that the multifidus muscles of some individuals are active early enough to potentially increase the collision-induced loading of the facet capsular ligaments. [ABSTRACT FROM AUTHOR]- Published
- 2008
- Full Text
- View/download PDF
5. Estimating whole-body centre of mass sway during quiet standing with inertial measurement units.
- Author
-
Foulger LH, Reiter ER, Kuo C, Carpenter MG, and Blouin JS
- Subjects
- Humans, Male, Female, Biomechanical Phenomena, Adult, Young Adult, Postural Balance physiology, Standing Position
- Abstract
Our ability to balance upright provides a stable platform to perform daily activities. Balance deficits associated with various clinical conditions may affect activities of daily living, highlighting the importance of quantifying standing balance in ecological environments. Although typically performed in laboratory settings, the growing availability of low-cost inertial measurement units (IMUs) allows the assessment of balance in the real world. However, it is unclear how many IMUs are required to adequately estimate linear displacements of the centre of mass (CoM) at stance widths associated with daily activities. While wearing IMUs on their head, sternum, back, right thigh, right shank, and left shank, 16 participants stood quietly on a force platform in narrow, hip-width, and shoulder-width stances, each for three two-minute trials. Using a multi-segment biomechanical model, we estimated CoM displacements from all possible combinations of the IMUs. We then calculated the correlation between the IMU- and force platform- CoM estimates to determine the minimal number of IMUs needed to estimate CoM sway. Four IMUs were necessary to accurately estimate anteroposterior (AP) and mediolateral (ML) CoM displacements across stance widths. Using IMUs on the back, right thigh, and both shanks, we found strong correlations between the IMU CoM estimation and the force platform CoM estimation in narrow stance (AP: r = 0.92±0.04, RMSE = 2.39±2.08 mm; ML: r = 0.97±0.02, RMSE = 1.16±0.77 mm), hip-width stance (AP: r = 0.93±0.04, RMSE = 2.00±1.18 mm; ML: r = 0.92±0.06, RMSE = 0.92±0.70 mm), and shoulder-width stance (AP: r = 0.93±0.03, RMSE = 1.95±1.66 mm; ML: r = 0.86±0.13, RMSE = 1.39±1.46 mm). These results indicate that IMUs can be used to estimate CoM displacements during quiet standing and that four IMUs are necessary to do so. Using an algorithm based on a simple biomechanical model, researchers and clinicians can estimate whole-body CoM displacements accurately during unperturbed quiet standing. This approach can improve the ecological validity of standing balance research and opens the possibility for assessing/monitoring patients with standing balance deficits., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2025 Foulger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2025
- Full Text
- View/download PDF
6. The Effect of Roll Circular Vection on Roll Tilt Postural Responses and Roll Subjective Postural Horizontal of Healthy Normal Subjects.
- Author
-
Cleworth TW, Allum JHJ, Nielsen EI, and Carpenter MG
- Abstract
Background : Falls and related injuries are critical issues in several disease states, as well as aging, especially when interactions between vestibular and visual sensory inputs are involved. Slow support surface tilt (0.6 deg/s) followed by subjective postural horizontal (SPH) assessments have been proposed as a viable method for assessing otolith contributions to balance control. Previous assessments of perceived body alignment to vertical, including subjective visual vertical, have suggested that visual inputs are weighted more when vestibular information is near the threshold and less reliable during slow body tilt. To date, no studies have examined the influence of visual stimuli on slow roll-tilt postural responses and the SPH. Therefore, this study investigated how dynamic visual cues, in the form of circular vection (CV), influence postural responses and the perception of the horizontal during and after support surface tilt. Methods : Ten healthy young adults (6 female, mean age 23) wore a head-mounted display while standing on a tilting platform. Participants were asked to remain upright for 30 s, during which (1) the visual scene rotated, inducing roll CV clockwise (CW) or counter-clockwise (CCW) at 60°/s; (2) the platform only (PO) rotated in roll to test SPH (0.6°/s, 2°, CW or CCW); (3) a combination of both; or (4) neither occurred. During SPH trials, participants used a hand-held device to reset the position of the platform to 0.8°/s to their perceived SPH. The angular motion of body segments was measured using pairs of light-emitting diodes mounted on the head, trunk and pelvis. Segment motion, prior to platform motion, was compared to that at peak body motion induced by platform motion and when SPH had been set. Results : When the support surface was tilted 2°, peak upper body tilt significantly increased for congruent CV and platform tilt and decreased at the pelvis for incongruent CV when compared to PO, leading to significant differences across body segments for congruent and incongruent conditions ( p ≤ 0.008). During PO, participants' mean SPH deviated from horizontal by 0.2°. The pelvis deviated 0.2°, the trunk 0.3°, and the head 0.5° in the direction of initial platform rotation. When platform tilt and CV directions were congruent or incongruent, only head tilt at SPH reset under congruent conditions was significantly different from the PO condition (1.7° vs. 0.5°). Conclusions : Roll CV has a significant effect on phasic body responses and a less significant effect on tonic body responses to lateral tilt. The SPH of the support surface was not altered by CV. Responses during tilt demonstrated enhanced reactions for congruent and reduced reactions for incongruent CV, both different from responses to CV alone. Tonic body displacements associated with SPH were changed less than those during tilt and were only slightly larger than displacements for CV alone. This study supports the hypothesis of weighted multisensory integration during dynamic postural tasks being highly dependent on the direction of visual cues during tilt and less dependent on tonic SPH offsets. These techniques could be used to examine vestibular and visual interactions within clinical populations, particularly those with visual vertigo and dizziness.
- Published
- 2023
- Full Text
- View/download PDF
7. Effects of postural threat on the scaling of anticipatory postural adjustments in young and older adults.
- Author
-
Phanthanourak AL, Adkin AL, Carpenter MG, and Tokuno CD
- Abstract
Introduction: The ability to scale anticipatory postural adjustments (APAs) according to the predicted size of the upcoming movement is reduced with aging. While age-related changes in central set may be one reason for this effect, an individual's emotional state might also contribute to changes in anticipatory postural control. Therefore, the purpose of this study was to determine whether an altered emotional state, as elicited through postural threat, alters the scaling of APAs during a handle pull movement in young and older adults. It was hypothesized that the presence of postural threat would lead to more homogenous APAs (i.e., less scaling of APAs) across a range of pulling forces., Methods: Young ( n = 23) and older adults ( n = 16) stood on top of a force plate that was mounted to a motorized platform. From this position, participants performed a series of handle pull trials without (no threat) or with (threat) the possibility of receiving a postural perturbation in the form of an unpredictable surface translation. Handle pulls were performed at force levels between 50 and 90% of maximum force. For each trial, the magnitude and timing of the APA were quantified from center of pressure (COP) recordings as well as electromyographic (EMG) activity of the soleus and medial gastrocnemius. The scaling of APAs with respect to force exertion was then determined through regression analyses and by comparing APAs during pulls of lower versus higher force., Results and Discussion: As evidenced by their smaller slope of the regression line between various dependent measures (i.e., COP velocity, soleus EMG onset latency, and soleus EMG amplitude) and the pulled forces, older adults demonstrated less scaling of APAs than the young. However, increases in arousal, anxiety and fear of falling due to postural threat, only minimally altered the scaling of APAs. Regardless of age, the slope of the regressions for none of the measures were affected by threat while only the soleus and medial gastrocnemius EMG onsets demonstrated significant force × threat interaction effects. These results suggest that the decreased ability to scale APAs with aging is unlikely to be due to changes in emotional state., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Phanthanourak, Adkin, Carpenter and Tokuno.)
- Published
- 2023
- Full Text
- View/download PDF
8. The role of torque feedback in standing balance.
- Author
-
Missen KJ, Assländer L, Babichuk A, Chua R, Inglis JT, and Carpenter MG
- Subjects
- Young Adult, Humans, Feedback, Torque, Movement, Feedback, Sensory, Postural Balance, Ankle
- Abstract
It has been proposed that sensory force/pressure cues are integrated within a positive feedback mechanism, which accounts for the slow dynamics of human standing behavior and helps align the body with gravity. However, experimental evidence of this mechanism remains scarce. This study tested predictions of a positive torque feedback mechanism for standing balance, specifically that differences between a "reference" torque and actual torque are self-amplified, causing the system to generate additional torque. Seventeen healthy young adults were positioned in an apparatus that permitted normal sway at the ankle until a brake on the apparatus was applied, discreetly "locking" body movement during stance. Once locked, a platform positioned under the apparatus remained in place (0 mm) or slowly translated backward (3 mm or 6 mm), tilting subjects forward. Postural behavior was characterized by two distinct responses: the center of pressure (COP) offset (i.e., change in COP elicited by the surface translation) and the COP drift (i.e., change in COP during the sustained tilt). Model simulations were performed using a linear balance control model containing torque feedback to provide a conceptual basis for the interpretation of experimental results. Holding the body in sustained tilt positions resulted in COP drifting behavior, reflecting attempts of the balance control system to restore an upright position through increases in plantar flexor torque. In line with predictions of positive torque feedback, larger COP offsets led to faster increases in COP over time. These findings provide experimental support for a positive torque feedback mechanism involved in the control of standing balance. NEW & NOTEWORTHY Using model simulations and a novel experimental approach, we tested behavioral predictions of a sensory torque feedback mechanism involved in the control of upright standing. Torque feedback is thought to reduce the effort required to stand and play a functional role in slowly aligning the body with gravity. Our results provide experimental evidence of a torque feedback mechanism and offer new and valuable insights into the sensorimotor control of human balance.
- Published
- 2023
- Full Text
- View/download PDF
9. Effects of postural threat on perceptions of lower leg somatosensory stimuli during standing.
- Author
-
Cleworth TW, Peters RM, Chua R, Inglis JT, and Carpenter MG
- Abstract
Height-induced postural threat affects emotional state and standing balance behaviour during static, voluntary, and dynamic tasks. Facing a threat to balance also affects sensory and cortical processes during balance tasks. As sensory and cognitive functions are crucial in forming perceptions of movement, balance-related changes during threatening conditions might be associated with changes in conscious perceptions. Therefore, the purpose of this study was to examine the changes and potential mechanisms underlying conscious perceptions of balance-relevant information during height-induced postural threat. A combination of three experimental procedures utilized height-induced postural threat to manipulate emotional state, balance behavior, and/or conscious perceptions of balance-related stimuli. Experiment 1 assessed conscious perception of foot position during stance. During continuous antero-posterior pseudorandom support surface rotations, perceived foot movement was larger while actual foot movement did not change in the High (3.2 m, at the edge) compared to Low (1.1 m, away from edge) height conditions. Experiment 2 and 3 assessed somatosensory perceptual thresholds during upright stance. Perceptual thresholds for ankle rotations were elevated while foot sole vibrations thresholds remained unchanged in the High compared to Low condition. This study furthers our understanding of the relationship between emotional state, sensory perception, and balance performance. While threat can influence the perceived amplitude of above threshold ankle rotations, there is a reduction in the sensitivity of an ankle rotation without any change to foot sole sensitivity. These results highlight the effect of postural threat on neurophysiological and cognitive components of balance control and provide insight into balance assessment and intervention., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Cleworth, Peters, Chua, Inglis and Carpenter.)
- Published
- 2023
- Full Text
- View/download PDF
10. Postural threat increases sample entropy of postural control.
- Author
-
Fischer OM, Missen KJ, Tokuno CD, Carpenter MG, and Adkin AL
- Abstract
Introduction: Postural threat elicits modifications to standing balance. However, the underlying neural mechanism(s) responsible remain unclear. Shifts in attention focus including directing more attention to balance when threatened may contribute to the balance changes. Sample entropy, a measure of postural sway regularity with lower values reflecting less automatic and more conscious control of balance, may support attention to balance as a mechanism to explain threat-induced balance changes. The main objectives were to investigate the effects of postural threat on sample entropy, and the relationships between threat-induced changes in physiological arousal, perceived anxiety, attention focus, sample entropy, and traditional balance measures. A secondary objective was to explore if biological sex influenced these relationships., Methods: Healthy young adults (63 females, 42 males) stood quietly on a force plate without (No Threat) and with (Threat) the expectation of receiving a postural perturbation (i.e., forward/backward support surface translation). Mean electrodermal activity and anterior-posterior centre of pressure (COP) sample entropy, mean position, root mean square, mean power frequency, and power within low (0-0.05 Hz), medium (0.5-1.8 Hz), and high-frequency (1.8-5 Hz) components were calculated for each trial. Perceived anxiety and attention focus to balance, task objectives, threat-related stimuli, self-regulatory strategies, and task-irrelevant information were rated after each trial., Results and Discussion: Significant threat effects were observed for all measures, except low-frequency sway. Participants were more physiologically aroused, more anxious, and directed more attention to balance, task objectives, threat-related stimuli, and self-regulatory strategies, and less to task-irrelevant information in the Threat compared to No Threat condition. Participants also increased sample entropy, leaned further forward, and increased the amplitude and frequency of COP displacements, including medium and high-frequency sway, when threatened. Males and females responded in the same way when threatened, except males had significantly larger threat-induced increases in attention to balance and high-frequency sway. A combination of sex and threat-induced changes in physiological arousal, perceived anxiety, and attention focus accounted for threat-induced changes in specific traditional balance measures, but not sample entropy. Increased sample entropy when threatened may reflect a shift to more automatic control. Directing more conscious control to balance when threatened may act to constrain these threat-induced automatic changes to balance., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Fischer, Missen, Tokuno, Carpenter and Adkin.)
- Published
- 2023
- Full Text
- View/download PDF
11. Cortical potentials time-locked to discrete postural events during quiet standing are facilitated during postural threat exposure.
- Author
-
Zaback M, Missen KJ, Adkin AL, Chua R, Inglis JT, and Carpenter MG
- Subjects
- Young Adult, Humans, Postural Balance physiology, Time Factors, Fear physiology, Standing Position
- Abstract
During unperturbed bipedal standing, postural control is governed primarily by subcortical and spinal networks. However, it is unclear if cortical networks begin to play a greater role when stability is threatened. This study investigated how initial and repeated exposure to a height-related postural threat modulates cortical potentials time-locked to discrete centre of pressure (COP) events during standing. Twenty-seven young adults completed a series of 90-s standing trials at LOW (0.8 m above the ground, away from edge) and HIGH (3.2 m above the ground, at edge) threat conditions. Three LOW trials were completed before and after 15 consecutive HIGH trials. Participants stood on a force plate while electroencephalographic (EEG) activity was recorded. To examine changes in cortical activity in response to discrete postural events, prominent forward and backward peaks in the anterior-posterior COP time series were identified. EEG data were waveform-averaged to these events and the amplitude of event-related cortical activity was calculated. At the LOW condition, event-related potentials (ERPs) were scarcely detectable. However, once individuals stood at the HIGH condition, clear ERPs were observed, with more prominent potentials being observed for forward (edge-directed), compared to backward, COP events. Since forward COP peaks accelerate the centre of mass away from the platform edge, these results suggest there is intermittent recruitment of cortical networks that may be involved in the detection and minimization of postural sway toward a perceived threat. This altered cortical engagement appears resistant to habituation and may contribute to threat-related balance changes that persist following repeated threat exposure. KEY POINTS: While standing balance control is regulated primarily by subcortical and spinal processes, it is unclear if cortical networks play a greater role when stability is threatened. This study examined how cortical potentials time-locked to prominent peaks in the anterior-posterior centre of pressure (COP) time series were modulated by exposure to a height-related postural threat. While cortical potentials recorded over the primary sensorimotor cortices were scarcely detectable under non-threatening conditions, clear cortical potentials were observed when individuals stood under conditions of height-related threat. Cortical potentials were larger in response to COP peaks directed toward, compared to away from, the platform edge, and showed limited habituation with repeated threat exposure. Since forward COP peaks accelerate the centre of mass away from the platform edge, these findings suggest that when balance is threatened, there is intermittent recruitment of cortical networks, which may minimize the likelihood of falling in the direction of a perceived threat., (© 2023 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.)
- Published
- 2023
- Full Text
- View/download PDF
12. Estimation of the visual contribution to standing balance using virtual reality.
- Author
-
Assländer L, Albrecht M, Diehl M, Missen KJ, Carpenter MG, and Streuber S
- Subjects
- Humans, Reproducibility of Results, Feedback, Healthy Volunteers, Postural Balance physiology, Virtual Reality
- Abstract
Sensory perturbations are a valuable tool to assess sensory integration mechanisms underlying balance. Implemented as systems-identification approaches, they can be used to quantitatively assess balance deficits and separate underlying causes. However, the experiments require controlled perturbations and sophisticated modeling and optimization techniques. Here we propose and validate a virtual reality implementation of moving visual scene experiments together with model-based interpretations of the results. The approach simplifies the experimental implementation and offers a platform to implement standardized analysis routines. Sway of 14 healthy young subjects wearing a virtual reality head-mounted display was measured. Subjects viewed a virtual room or a screen inside the room, which were both moved during a series of sinusoidal or pseudo-random room or screen tilt sequences recorded on two days. In a between-subject comparison of 10 [Formula: see text] 6 min long pseudo-random sequences, each applied at 5 amplitudes, our results showed no difference to a real-world moving screen experiment from the literature. We used the independent-channel model to interpret our data, which provides a direct estimate of the visual contribution to balance, together with parameters characterizing the dynamics of the feedback system. Reliability estimates of single subject parameters from six repetitions of a 6 [Formula: see text] 20-s pseudo-random sequence showed poor test-retest agreement. Estimated parameters show excellent reliability when averaging across three repetitions within each day and comparing across days (Intra-class correlation; ICC 0.7-0.9 for visual weight, time delay and feedback gain). Sway responses strongly depended on the visual scene, where the high-contrast, abstract screen evoked larger sway as compared to the photo-realistic room. In conclusion, our proposed virtual reality approach allows researchers to reliably assess balance control dynamics including the visual contribution to balance with minimal implementation effort., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
13. The effects of eccentric exercise-induced fatigue on position sense during goal-directed movement.
- Author
-
Grose G, Manzone DM, Eschelmuller G, Peters RM, Carpenter MG, Inglis JT, and Chua R
- Subjects
- Arm, Humans, Movement physiology, Muscle, Skeletal physiology, Vibration, Goals, Proprioception physiology
- Abstract
We investigated the impairment of position sense associated with muscle fatigue. In Experiment 1 , participants performed learned eccentric extension (22°/s) movements of the elbow as the arm was pulled through the horizontal plane without vision of the arm. They opened their closed right hand when they judged it to be passing through a target. Dynamic position sense was assessed via accuracy of limb position to the target at the time of hand opening. Eccentric movements were performed against a flexion load [10% of flexion maximum voluntary contractions (MVCs)]. We investigated performance under conditions with and without biceps vibration, as well as before and after eccentric exercise. In Experiment 2 , a motor was used to extend the participant's limb passively. We compared conditions with and without vibration of the lengthening but passive biceps, before and after exercise. In Experiment 1 , vibration of the active biceps resulted in participants opening their hands earlier [mean, [Formula: see text] (95% confidence interval, CI) -5.52° (-7.40, -3.63)] compared with without vibration. Exercise reduced flexion MVCs by ∼44%, and participants undershot the target more [-5.51° (-9.31, -1.70)] in the post-exercise block during control trials. Exercise did not influence the persistence of the vibratory illusion. In Experiment 2 , vibration resulted in greater undershooting [-2.99° (-3.99, -1.98)] compared with without vibration, before and after exercise. Although exercise reduced MVCs by ∼50%, the passive task showed no effects of exercise. We suggest that the central nervous system continues to rely on muscle spindles for limb position sense, even when they reside in a muscle exposed to fatiguing eccentric contractions. NEW & NOTEWORTHY Dynamic position errors were examined in an eccentric and a passive elbow extension proprioceptive-targeting task, before and after eccentric exercise, with and without muscle vibration. Participants actively undershot the target more when fatigued while fatigue did not exacerbate task accuracy during passive movement. Vibration caused undershoots regardless of fatigue state during active and passive movements. We propose that the central nervous system continues to rely on muscle spindles for kinesthesia, even when they reside in a fatigued muscle.
- Published
- 2022
- Full Text
- View/download PDF
14. Soleus responses to Achilles tendon stimuli are suppressed by heel and enhanced by metatarsal cutaneous stimuli during standing.
- Author
-
Mildren RL, Peters RM, Carpenter MG, Blouin JS, and Inglis JT
- Subjects
- Electric Stimulation, Electromyography, H-Reflex, Heel, Humans, Muscle, Skeletal, Reflex, Stretch, Achilles Tendon, Metatarsal Bones
- Abstract
Key Points: We examined the influence of cutaneous feedback from the heel and metatarsal regions of the foot sole on the soleus stretch reflex pathway during standing. We found that heel electrical stimuli suppressed and metatarsal stimuli enhanced the soleus vibration response. Follow-up experiments indicated that the interaction between foot sole cutaneous feedback and the soleus vibration response was likely not mediated by presynaptic inhibition and was contingent upon a modulation at the ⍺-motoneuron pool level. The spatially organized interaction between cutaneous feedback from the foot sole and the soleus vibration response provides information about how somatosensory information is combined to appropriately respond to perturbations during standing., Abstract: Cutaneous feedback from the foot sole provides balance-relevant information and has the potential to interact with spinal reflex pathways. In this study, we examined how cutaneous feedback from the foot sole (heel and metatarsals) influenced the soleus response to proprioceptive stimuli during standing. We delivered noisy vibration (10-115 Hz) to the right Achilles tendon while we intermittently applied electrical pulse trains (five 1-ms pulses at 200 Hz, every 0.8-1.0 s) to the skin under either the heel or the metatarsals of the ipsilateral foot sole. We analysed time-dependent (referenced to cutaneous stimuli) coherence and cross-correlations between the vibration acceleration and rectified soleus EMG. Vibration-EMG coherence was observed across a bandwidth of ∼10-80 Hz, and coherence was suppressed by heel but enhanced by metatarsal cutaneous stimuli. Cross-correlations showed soleus EMG was correlated with the vibration (∼40 ms lag) and cross-correlations were also suppressed by heel (from 104-155 ms) but enhanced by metatarsal (from 76-128 ms) stimuli. To examine the neural mechanisms mediating this reflex interaction, we conducted two further experiments to probe potential contributions from (1) presynaptic inhibition, and (2) modulations at the ⍺- and γ-motoneuron pools. Results suggest the cutaneous interactions with the stretch reflex pathway required a modulation at the ⍺-motoneuron pool and were likely not mediated by presynaptic inhibition. These findings demonstrate that foot sole cutaneous information functionally tunes the stretch reflex pathway during the control of upright posture and balance., (© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society.)
- Published
- 2021
- Full Text
- View/download PDF
15. Selective preservation of changes to standing balance control despite psychological and autonomic habituation to a postural threat.
- Author
-
Zaback M, Luu MJ, Adkin AL, and Carpenter MG
- Subjects
- Accidental Falls prevention & control, Adult, Anxiety physiopathology, Anxiety psychology, Autonomic Nervous System physiopathology, Choice Behavior physiology, Emotional Regulation physiology, Emotions, Female, Humans, Male, Risk-Taking, Young Adult, Adaptation, Physiological physiology, Fear psychology, Habituation, Psychophysiologic physiology, Postural Balance physiology, Standing Position
- Abstract
Humans exhibit changes in postural control when confronted with threats to stability. This study used a prolonged threat exposure protocol to manipulate emotional state within a threatening context to determine if any threat-induced standing behaviours are employed independent of emotional state. Retention of balance adaptations was also explored. Thirty-seven adults completed a series of 90-s standing trials at two surface heights (LOW: 0.8 m above ground, away from edge; HIGH: 3.2 m above ground, at edge) on two visits 2-4 weeks apart. Psychological and autonomic state was assessed using self-report and electrodermal measures. Balance control was assessed using centre of pressure (COP) and lower limb electromyographic recordings. Upon initial threat exposure, individuals leaned backward, reduced low-frequency centre of pressure (COP) power, and increased high-frequency COP power and plantar/dorsiflexor coactivation. Following repeated exposure, the psychological and autonomic response to threat was substantially reduced, yet only high-frequency COP power and plantar/dorsiflexor coactivation habituated. Upon re-exposure after 2-4 weeks, there was partial recovery of the emotional response to threat and few standing balance adaptations were retained. This study suggests that some threat-induced standing behaviours are coupled with the psychological and autonomic state changes induced by threat, while others may reflect context-appropriate adaptations resistant to habituation.
- Published
- 2021
- Full Text
- View/download PDF
16. Brain connectivity during simulated balance in older adults with and without Parkinson's disease.
- Author
-
Pasman EP, McKeown MJ, Garg S, Cleworth TW, Bloem BR, Inglis JT, and Carpenter MG
- Subjects
- Aged, Bayes Theorem, Brain diagnostic imaging, Cross-Sectional Studies, Humans, Magnetic Resonance Imaging, Neural Pathways diagnostic imaging, Parkinson Disease diagnostic imaging
- Abstract
Individuals with Parkinson's disease often experience postural instability, a debilitating and largely treatment-resistant symptom. A better understanding of the neural substrates contributing to postural instability could lead to more effective treatments. Constraints of current functional neuroimaging techniques, such as the horizontal orientation of most MRI scanners (forcing participants to lie supine), complicates investigating cortical and subcortical activation patterns and connectivity networks involved in healthy and parkinsonian balance control. In this cross-sectional study, we utilized a newly-validated MRI-compatible balance simulator (based on an inverted pendulum) that enabled participants to perform balance-relevant tasks while supine in the scanner. We utilized functional MRI to explore effective connectivity underlying static and dynamic balance control in healthy older adults (n = 17) and individuals with Parkinson's disease while on medication (n = 17). Participants performed four tasks within the scanner with eyes closed: resting, proprioceptive tracking of passive ankle movement, static balancing of the simulator, and dynamic responses to random perturbations of the simulator. All analyses were done in the participant's native space without spatial transformation to a common template. Effective connectivity between 57 regions of interest was computed using a Bayesian Network learning approach with false discovery rate set to 5%. The first 12 principal components of the connection weights, binomial logistic regression, and cross-validation were used to create 4 separate models: contrasting static balancing vs {rest, proprioception} and dynamic balancing vs {rest, proprioception} for both controls and individuals with Parkinson's disease. In order to directly compare relevant connections between controls and individuals with Parkinson's disease, we used connections relevant for predicting a task in either controls or individuals with Parkinson's disease in logistic regression with Least Absolute Shrinkage and Selection Operator regularization. During dynamic balancing, we observed decreased connectivity between different motor areas and increased connectivity from the brainstem to several cortical and subcortical areas in controls, while individuals with Parkinson's disease showed increased connectivity associated with motor and parietal areas, and decreased connectivity from brainstem to other subcortical areas. No significant models were found for static balancing in either group. Our results support the notion that dynamic balance control in individuals with Parkinson's disease relies more on cortical motor areas compared to healthy older adults, who show a preference of subcortical control during dynamic balancing., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
17. Residual Innervation of the Pelvic Floor Muscles in People with Motor-Complete Spinal Cord Injury.
- Author
-
Williams AMM, Eginyan G, Deegan E, Chow M, Carpenter MG, and Lam T
- Subjects
- Adult, Electromyography, Female, Humans, Male, Middle Aged, Muscle, Skeletal physiopathology, Pelvic Floor physiopathology, Transcranial Magnetic Stimulation, Evoked Potentials, Motor physiology, Muscle, Skeletal innervation, Pelvic Floor innervation, Spinal Cord Injuries physiopathology
- Abstract
Individuals classified clinically as having a motor-complete spinal cord injury (mcSCI) should lack voluntary motor function below their injury level. Neurophysiological assessments using electromyography (EMG) and transcranial magnetic stimulation (TMS), however, have demonstrated that persons with mcSCI retain limited cortical descending innervation and voluntary activation of muscles below their level of injury, including muscles of the trunk and lower limb. We explored the possibility of whether there is also preserved innervation of the pelvic floor muscles (PFM) in persons with mcSCI. The PFM are controlled by widespread cortical and subcortical areas and typically coactivated with trunk and gluteal muscles to maintain continence and regulate intra-abdominal pressure. Nine mcSCI and eight control subjects participated in this cross-sectional study. Surface EMG was used to record activity in the PFM. Data were recorded while participants attempted various maneuvers of the trunk and pelvis. We also applied TMS at incrementing levels of intensity over the primary motor cortex area to record motor evoked potentials (MEPs) in the PFM. When performing the maneuvers, activation of the PFM was possible in all controls and the majority of SCI participants. However, the PFM were only activated in the SCI participants during maneuvers that engaged other trunk muscles, however. MEP responses in the PFM were also elicited in all controls and SCI participants, but MEP response characteristics were significantly altered in the SCI group. Our results suggest that persons with mcSCI retain some residual innervation of the PFM after injury, possibly via indirect cortical descending pathways.
- Published
- 2020
- Full Text
- View/download PDF
18. Influence of age on the frequency characteristics of the soleus muscle response to Achilles tendon vibration during standing.
- Author
-
Mildren RL, Schmidt ME, Eschelmuller G, Carpenter MG, Blouin JS, and Inglis JT
- Subjects
- Adult, Aged, Aged, 80 and over, Electromyography, Humans, Middle Aged, Muscle, Skeletal, Postural Balance, Proprioception, Vibration, Young Adult, Achilles Tendon
- Abstract
Key Points: Proprioceptive sensory information from the ankle joint is critical for the control of upright posture and balance. We examined the influence of age (n = 54 healthy adults, 20-82 years old) on lower limb muscle responses to proprioceptive perturbations evoked by Achilles tendon vibration during standing. The frequency bandwidth of the muscle response became narrower, and the gain (the muscle response relative to the stimulus) and scaling (increases in response amplitude with increases in stimulus amplitude) decreased with age. Mechanics of the muscle-tendon unit (mechanical admittance) did not differ with age during standing, and thus probably did not mediate the age-related changes observed in soleus muscle responses to vibration. These findings add to our understanding of how altered proprioceptive responses may contribute to impaired mobility and falls with ageing., Abstract: Proprioceptive information from the ankle joint plays an important role in the control of upright posture and balance. Ageing influences many components of the sensorimotor system, which leads to poor mobility and falls. However, little is known about the influence of age on the characteristics of short latency muscle responses to proprioceptive stimuli during standing across frequencies that are encoded by muscle spindles. We examined the frequency characteristics of the soleus muscle response to noisy (10-115 Hz) Achilles tendon vibration during standing in 54 healthy adults across a broad age range (20-82 years). The results showed the frequency bandwidth of the soleus response (vibration-electromyography coherence) became progressively narrower with ageing. Coherence was significantly lower in middle-aged relative to young adults between ∼7-11 and 28-62 Hz, lower in older relative to middle-aged adults between ∼30-50 Hz and lower in older relative to young adults between ∼7-64 Hz. Muscle response gain was similar between age groups at low frequencies, although gain was lower in older relative to young adults between ∼28-54 Hz. Across the age range, the response amplitude (peak-to-peak cross-covariance) and the scaling of the response with stimulus amplitude were both negatively correlated with age. Muscle-tendon mechanics (admittance) did not differ with age, suggesting this did not mediate differences in soleus responses. Our findings suggest there is a progressive change in the soleus response to proprioceptive stimuli with ageing during standing, which could contribute to poorer mobility and falls., (© 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society.)
- Published
- 2020
- Full Text
- View/download PDF
19. Lower-limb muscle responses evoked with noisy vibrotactile foot sole stimulation.
- Author
-
Peters RM, Mildren RL, Hill AJ, Carpenter MG, Blouin JS, and Timothy Inglis J
- Subjects
- Adult, Female, Humans, Male, Muscle Contraction, Reflex, Evoked Potentials, Motor, Foot physiology, Muscle, Skeletal physiology, Touch, Vibration
- Abstract
Aim: Cutaneous feedback from the foot sole contributes to the control of standing balance in two ways: it provides perceptual awareness of tactile perturbations at the interface with the ground (e.g., shifts in the pressure distribution, slips, etc.) and it reflexively activates lower-motor neurons to trigger stabilizing postural responses. Here we focus on the latter, cutaneous (or cutaneomotor) reflex coupling in the lower limb. These reflexes have been studied most-frequently with electrical pulse trains that bypass natural cutaneous mechanotransduction, stimulating cutaneous afferents in a largely non-physiological manner. Harnessing the mechanical filtering properties of cutaneous afferents, we take a novel mechanical approach by applying supra-threshold continuous noisy vibrotactile stimulation (NVS) to the medial forefoot., Methods: Using NVS, we characterized the time and frequency domain properties of cutaneomotor reflexes in the Tibialis Anterior. We additionally measured stimulus-triggered average muscle responses to repeated discrete sinusoidal pulses for comparison. To investigate cutaneomotor reflex gain scaling, stimuli were delivered at 3- or 10-times perceptual threshold (PT), while participants held 12.5% or 25% of maximum voluntary contraction (MVC)., Results: Peak responses in the time domain were observed at lags reflecting transmission delay through a polysynaptic reflex pathway (~90-100 ms). Increasing the stimulus amplitude enhanced cutaneomotor coupling, likely by increasing afferent firing rates. Although greater background muscle contraction increased the overall amplitude of the evoked responses, it did not increase the proportion of the muscle response attributable to cutaneous input., Conclusion: Taken together, our findings support the use of NVS as a novel tool for probing the physiological properties of cutaneomotor reflex pathways., (© 2020 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.)
- Published
- 2020
- Full Text
- View/download PDF
20. The influence of postural threat on strategy selection in a stepping-down paradigm.
- Author
-
Kluft N, Bruijn SM, Luu MJ, Dieën JHV, Carpenter MG, and Pijnappels M
- Subjects
- Accidental Falls, Aged, Aged, 80 and over, Biomechanical Phenomena, Female, Humans, Male, Muscle, Skeletal physiology, Aging physiology, Aging psychology, Fear, Gait physiology, Movement physiology, Postural Balance physiology, Posture physiology
- Abstract
To walk safely in their environment, people need to select adequate movement strategies during gait. In situations that are perceived as more threatening, older adults adopt more cautious strategies. For individuals with excessive fear, selecting adequate strategies might be troubling. We investigated how a postural threat affects the selection of strategies within and between older adults by using a stepping-down paradigm. In twenty-four older adults we determined the height at which they switched in stepping-down strategies from a less demanding but more balance threatening heel landing to a more demanding yet safer toe landing. We expected that this switching height would be lower in the high (0.78 m elevation) compared to low threat (floor level) condition. Furthermore, we investigated if older adults, for which the postural threat evoked an increase in the perceived fear, presented a different stepping down strategy due to the postural threat. Our results indicated that the postural threat changed older adults' strategies selection towards a more conservative toe landing. Hence, despite the additional effort, older adults prefer more cautious strategies during a postural threat. No effects of perceived fear on strategy selection between individuals were observed, potentially due to relatively small differences in fear among participants.
- Published
- 2020
- Full Text
- View/download PDF
21. Soleus single motor units show stronger coherence with Achilles tendon vibration across a broad bandwidth relative to medial gastrocnemius units while standing.
- Author
-
Mildren RL, Peters RM, Carpenter MG, Blouin JS, and Inglis JT
- Subjects
- Adult, Evoked Potentials, Motor, Feedback, Sensory, Female, Humans, Male, Muscle Contraction, Achilles Tendon physiology, Muscle, Skeletal physiology, Standing Position, Vibration
- Abstract
To probe the frequency characteristics of somatosensory responses in the triceps surae muscles, we previously applied suprathreshold noisy vibration to the Achilles tendon and correlated it with ongoing triceps surae muscle activity (recorded via surface EMG) during standing. Stronger responses to tendon stimuli were observed in soleus (Sol) relative to medial gastrocnemius (MGas) surface EMG; however, it is unknown whether differences in motor unit activity or limitations of surface EMG could have influenced this finding. Here, we inserted indwelling EMG into Sol and MGas to record the activity of single motor units while we applied noisy vibration (10-115 Hz) to the right Achilles tendon of standing participants. We analyzed the relationship between vibration acceleration and the spike activity of active single motor units through estimates of coherence, gain, phase, and cross-covariance. We also applied sinusoidal vibration at frequencies from 10 to 100 Hz (in 5-Hz increments) to examine whether motor units demonstrate nonlinear synchronization or phase locking at higher frequencies. Relative to MGas single motor units, Sol units demonstrated stronger coherence and higher gain with noisy vibration across a bandwidth of 7-68 Hz, and larger peak-to-peak cross-covariance at all four stimulus amplitudes examined. Sol and MGas motor unit activity was modulated over the time course of the sinusoidal stimuli across all frequencies, but their phase-locking behavior was minimal. These findings suggest Sol plays a prominent role in responding to disturbances transmitted through the Achilles tendon across a broad frequency band during standing. NEW & NOTEWORTHY We examined the relationship between Achilles tendon stimuli and spike times of single soleus (Sol) and medial gastrocnemius (MGas) motor units during standing. Relative to MGas, Sol units demonstrated stronger coherence and higher gain with noisy stimuli across a bandwidth of 7-68 Hz. Sol and MGas units demonstrated minimal nonlinear phase locking with sinusoidal stimuli. These findings indicate Sol plays a prominent role in responding to tendon stimuli across a broad frequency band.
- Published
- 2019
- Full Text
- View/download PDF
22. A Novel MRI Compatible Balance Simulator to Detect Postural Instability in Parkinson's Disease.
- Author
-
Pasman EP, McKeown MJ, Cleworth TW, Bloem BR, Inglis JT, and Carpenter MG
- Abstract
Background: Postural instability is a debilitating and largely treatment-resistant symptom of Parkinson's disease (PD). A better understanding of the neural substrates contributing to postural instability could lead to new targets for improved pharmacological and neurosurgical interventions. However, investigating these neural substrates necessitates the use of functional MRI scanners, which are almost exclusively horizontally-based. Objective: We aimed to develop, and validate the use of, an MRI compatible balance simulator to study static and dynamic balance control in PD patients and elderly controls. Methods: Our MRI compatible balance simulator allowed participants to actively balance an inverted pendulum by activating postural muscles around the ankle joint while supine. Two studies were performed to compare static and dynamic balance performance between upright stance and simulated stance in PD patients and controls. Study 1 (14 PD; 20 controls) required participants to maintain static balance during upright and simulated stance for 120 s with eyes open and closed. In study 2 (20 PD; 22 controls) participants repeated the static balance task (80 s, eyes closed only), and also completed a dynamic balance task which required maintaining balance while experiencing random anterior-posterior perturbations applied to the trunk/pendulum. Postural sway of the body/pendulum was measured using an angular velocity sensor (SwayStar
TM , study 1) and Optotrak motion capture (study 2). Outcome measures were amplitude and frequency of center of mass sway for static balance, and peak and time-to-peak of center of mass displacement and velocity for dynamic balance. Results: PD patients had larger sway amplitude during both upright and simulated static balance compared to controls. PD patients had larger peak and time-to-peak sway, and larger time-to-peak sway velocity, during simulated, but not upright, dynamic balance compared to controls. Conclusions: Deficits in static and dynamic balance control can be detected in PD patients using a novel MRI compatible balance simulator. This technique allows for functional neuroimaging to be combined with balance-relevant tasks, and provides a new means to create insights into the neural substrates contributing to postural instability in PD.- Published
- 2019
- Full Text
- View/download PDF
23. Adaptation of emotional state and standing balance parameters following repeated exposure to height-induced postural threat.
- Author
-
Zaback M, Adkin AL, and Carpenter MG
- Subjects
- Adult, Female, Humans, Male, Cognition, Fear, Postural Balance, Standing Position
- Abstract
Height-induced postural threat influences standing balance control. However, it is unknown if minimizing individuals' emotional response to threat moderates this relationship. This study repeatedly exposed individuals to height-induced postural threat to determine if reducing the emotional response to threat influences standing balance control. Sixty-eight young adults completed a series of standing trials at LOW (0.8 m above ground, away from edge) and HIGH (3.2 m above ground, at edge) postural threat conditions. Emotional state was assessed using self-report and electrodermal measures. Standing balance was assessed through analysis of centre of pressure (COP) movement and lower leg electromyographic activity. Individuals' emotional response to threat was attenuated following repeated threat exposure. However, threat-induced changes in standing balance were largely preserved. When initially threatened, individuals leaned backward and demonstrated smaller amplitude and higher frequency of COP adjustments; these balance outcomes did not change following repeated threat exposure. Only high frequency COP oscillations (>1.8 Hz) and ankle muscle co-contraction showed any adaptation; regression analyses showed that these behavioural adaptations were accounted for by a combination of emotional and cognitive state changes. This suggests that some threat-induced standing balance changes are more closely linked with the emotional response to threat than others, and are therefore amendable to intervention.
- Published
- 2019
- Full Text
- View/download PDF
24. Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury.
- Author
-
Alamro RA, Chisholm AE, Williams AMM, Carpenter MG, and Lam T
- Subjects
- Adult, Female, Gait physiology, Humans, Male, Middle Aged, Spinal Cord Injuries physiopathology, Walking physiology, Young Adult, Exercise Therapy instrumentation, Exoskeleton Device, Muscle, Skeletal physiopathology, Spinal Cord Injuries rehabilitation, Torso physiopathology
- Abstract
Background: The trunk muscles are critical for postural control. Recent neurophysiological studies have revealed sparing of trunk muscle function in individuals with spinal cord injury (SCI) classified with thoracic or cervical motor-complete injuries. These findings raise the possibility for recruiting and retraining this spared trunk function through rehabilitation. Robotic gait training devices may provide a means to promote trunk muscle activation. Thus, the objective of this study was to characterize and compare the activation of the trunk muscles during walking with two robotic gait training devices (Ekso and Lokomat) in people with high thoracic motor-complete SCI., Methods: Participants with chronic motor-complete paraplegia performed 3 speed-matched walking conditions: Lokomat-assisted walking, Ekso-assisted walking overground, and Ekso-assisted walking on a treadmill. Surface electromyography (EMG) signals were recorded bilaterally from the rectus abdominis (RA), external oblique (EO), and erector spinae (ES) muscles., Results: Greater recruitment of trunk muscle EMG was elicited with Ekso-assisted walking compared to the Lokomat. Similar levels of trunk EMG activation were observed between Ekso overground and Ekso on the treadmill, indicating that differences between Ekso and Lokomat could not be attributed to the use of a hand-held gait aid. The level of trunk EMG activation during Lokomat walking was not different than that recorded during quiescent supine lying., Conclusions: Ekso-assisted walking elicits greater activation of trunk muscles compared to Lokomat-assisted walking, even after controlling for the use of hand-held assistive devices. The requirement of the Ekso for lateral weight-shifting in order to activate each step could lead to better postural muscle activation.
- Published
- 2018
- Full Text
- View/download PDF
25. Increased human stretch reflex dynamic sensitivity with height-induced postural threat.
- Author
-
Horslen BC, Zaback M, Inglis JT, Blouin JS, and Carpenter MG
- Subjects
- Feedback, Physiological, Female, Humans, Male, Muscle, Skeletal innervation, Muscle, Skeletal physiology, Psychomotor Performance, Young Adult, Postural Balance, Reflex, Stretch
- Abstract
Key Points: Threats to standing balance (postural threat) are known to facilitate soleus tendon-tap reflexes, yet the mechanisms driving reflex changes are unknown. Scaling of ramp-and-hold dorsiflexion stretch reflexes to stretch velocity and amplitude were examined as indirect measures of changes to muscle spindle dynamic and static function with height-induced postural threat. Overall, stretch reflexes were larger with threat. Furthermore, the slope (gain) of the stretch-velocity vs. short-latency reflex amplitude relationship was increased with threat. These findings are interpreted as indirect evidence for increased muscle spindle dynamic sensitivity, independent of changes in background muscle activity levels, with a threat to standing balance. We argue that context-dependent scaling of stretch reflexes forms part of a multisensory tuning process where acquisition and/or processing of balance-relevant sensory information is continuously primed to facilitate feedback control of standing balance in challenging balance scenarios., Abstract: Postural threat increases soleus tendon-tap (t-) reflexes. However, it is not known whether t-reflex changes are a result of central modulation, altered muscle spindle dynamic sensitivity or combined spindle static and dynamic sensitization. Ramp-and-hold dorsiflexion stretches of varying velocities and amplitudes were used to examine velocity- and amplitude-dependent scaling of short- (SLR) and medium-latency (MLR) stretch reflexes as an indirect indicator of spindle sensitivity. t-reflexes were also performed to replicate previous work. In the present study, we examined the effects of postural threat on SLR, MLR and t-reflex amplitude, as well as SLR-stretch velocity scaling. Forty young-healthy adults stood with one foot on a servo-controlled tilting platform and the other on a stable surface. The platform was positioned on a hydraulic lift. Threat was manipulated by having participants stand in low (height 1.1 m; away from edge) then high (height 3.5 m; at the edge) threat conditions. Soleus stretch reflexes were recorded with surface electromyography and SLRs and MLRs were probed with fixed-amplitude variable-velocity stretches. t-reflexes were evoked with Achilles tendon taps using a linear motor. SLR, MLR and t-reflexes were 11%, 9.5% and 16.9% larger, respectively, in the high compared to low threat condition. In 22 out of 40 participants, SLR amplitude was correlated to stretch velocity at both threat levels. In these participants, the gain of the SLR-velocity relationship was increased by 36.1% with high postural threat. These findings provide new supportive evidence for increased muscle spindle dynamic sensitivity with postural threat and provide further support for the context-dependent modulation of human somatosensory pathways., (© 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.)
- Published
- 2018
- Full Text
- View/download PDF
26. New Insights on Emotional Contributions to Human Postural Control.
- Author
-
Adkin AL and Carpenter MG
- Abstract
It has been just over 20 years since the effects of height-induced threat on human postural control were first investigated. Raising the height of the support surface on which individuals stood increased the perceived consequences of instability and generated postural control changes. Since this initial work, converging evidence has accumulated supporting the efficacy of using height-induced threat to study the effects of emotions on postural control and confirming a direct influence of threat-related changes in arousal, anxiety, and fear of falling on all aspects of postural control, including standing, anticipatory, and reactive balance. In general, threat-related postural changes promote a greater physical safety margin while maintaining upright stance. We use the static balance literature to critically examine the current state of knowledge regarding: (1) the extent to which threat-related changes in postural control are sensitive to threat-related changes in emotions; (2) the underlying neurophysiological and cognitive mechanisms that may contribute to explaining the relationship between emotions and postural control; and (3) the generalizability of threat-related changes across different populations and types of threat. These findings have important implications for understanding the neuromechanisms that control healthy balance, and highlight the need to recognize the potential contributions of psychological and physiological factors to balance deficits associated with age or pathology. We conclude with a discussion of the practical significance of this research, its impact on improving diagnosis and treatment of postural control deficits, and potential directions for future research.
- Published
- 2018
- Full Text
- View/download PDF
27. Alterations in the cortical control of standing posture during varying levels of postural threat and task difficulty.
- Author
-
Tokuno CD, Keller M, Carpenter MG, Márquez G, and Taube W
- Subjects
- Adult, Analysis of Variance, Anxiety psychology, Electromyography methods, Fear physiology, Fear psychology, Female, Humans, Male, Muscle Contraction physiology, Muscle, Skeletal physiology, Statistics, Nonparametric, Surveys and Questionnaires, Transcranial Magnetic Stimulation methods, Young Adult, Evoked Potentials, Motor physiology, Motor Cortex physiology, Postural Balance physiology, Standing Position
- Abstract
Cortical excitability increases during the performance of more difficult postural tasks. However, it is possible that changes in postural threat associated with more difficult tasks may in themselves lead to alterations in the neural strategies underlying postural control. Therefore, the purpose of this study was to examine whether changes in postural threat are responsible for the alterations in corticospinal excitability and short-interval intracortical inhibition (SICI) that occur with increasing postural task difficulty. Fourteen adults completed three postural tasks (supported standing, free standing, or standing on an unstable board) at two surface heights (ground level or 3 m above ground). Single- and paired-pulse magnetic stimuli were applied to the motor cortex to compare soleus (SOL) and tibialis anterior (TA) test motor-evoked potentials (MEPs) and SICI between conditions. SOL and TA test MEPs increased from 0.35 ± 0.29 to 0.82 ± 0.41 mV (SOL) and from 0.64 ± 0.51 to 1.96 ± 1.45 mV (TA), respectively, whereas SICI decreased from 52.4 ± 17.2% to 39.6 ± 15.4% (SOL) and from 71.3 ± 17.7% to 50.3 ± 19.9% (TA) with increasing task difficulty. In contrast to the effects of task difficulty, only SOL test MEPs were smaller when participants stood at high (0.49 ± 0.29 mV) compared with low height (0.61 ± 0.40 mV). Because the presence of postural threat did not lead to any additional changes in the excitability of the motor corticospinal pathway and intracortical inhibition with increasing task difficulty, it seems unlikely that alterations in perceived threat are primarily responsible for the neurophysiological changes that are observed with increasing postural task difficulty. NEW & NOTEWORTHY We examined how task difficulty and postural threat influence the cortical control of posture. Results indicated that the motor corticospinal pathway and intracortical inhibition were modulated more by task difficulty than postural threat. Furthermore, because the presence of postural threat during the performance of various postural tasks did not lead to summative changes in motor-evoked potentials, alterations in perceived threat are not responsible for the neurophysiological changes that occur with increasing postural task difficulty.
- Published
- 2018
- Full Text
- View/download PDF
28. Attentional requirements of postural control in people with spinal cord injury: the effect of dual task.
- Author
-
Tse CM, Carpenter MG, Liu-Ambrose T, Chisholm AE, and Lam T
- Subjects
- Adult, Analysis of Variance, Biomechanical Phenomena, Cross-Sectional Studies, Fear, Female, Humans, Male, Mathematical Concepts, Middle Aged, Motor Activity, Neuropsychological Tests, Visual Perception, Attention, Postural Balance, Spinal Cord Injuries physiopathology, Spinal Cord Injuries psychology
- Abstract
Study Design: Cross-sectional study., Objectives: To investigate the attentional requirements for maintaining standing balance in people with spinal cord injury (SCI) using a dual-task paradigm and to compare standing balance performance between SCI and able-bodied (AB) controls., Setting: LaboratoryMethods:Nine adults with incomplete SCI, who were able to stand unassisted were recruited, along with eight AB controls. Subjects performed a dual task involving counting backwards by 3 s out loud while standing with eyes open or closed. The primary outcome measures were the differences between SCI and control groups for movement reinvestment and the change in performance between single task and dual task for: (i) maximum standing time (STime); (ii) error ratio and total number of words uttered; and (iii) center of pressure measures. Perceptual measures included perceived mental workload, fear and confidence., Results: SCI subjects stood for shorter duration during dual task (stand and count) than single task (stand) compared with controls during eyes closed. Significant differences between groups were observed for movement reinvestment, center of pressure, perceived mental effort, fear and confidence. No significant effects were observed for math-task performance., Conclusions: Total STime during eyes closed is adversely affected by the addition of a math task for SCI subjects. Perceptual measures appear to correspond to increases in postural sway and conscious control of standing in subjects with SCI. Individuals who can stand for >60 s with eyes closed do not appear to be significantly affected by the addition of a concurrent secondary task of minimal mental workload.
- Published
- 2017
- Full Text
- View/download PDF
29. Both standing and postural threat decrease Achilles' tendon reflex inhibition from tendon electrical stimulation.
- Author
-
Horslen BC, Inglis JT, Blouin JS, and Carpenter MG
- Subjects
- Achilles Tendon innervation, Electric Stimulation, Female, Humans, Male, Mechanoreceptors physiology, Young Adult, Achilles Tendon physiology, H-Reflex, Neural Inhibition, Postural Balance, Posture
- Abstract
Key Points: Golgi tendon organs (GTOs) and associated Ib reflexes contribute to standing balance, but the potential impacts of threats to standing balance on Ib reflexes are unknown. Tendon electrical stimulation to the Achilles' tendon was used to probe changes in Ib inhibition in medial gastrocnemius with postural orientation (lying prone vs. upright standing; experiment 1) and height-induced postural threat (standing at low and high surface heights; experiment 2). Ib inhibition was reduced while participants stood upright, compared to lying prone (42.2%); and further reduced when standing in the high, compared to low, threat condition (32.4%). These experiments will impact future research because they demonstrate that tendon electrical stimulation can be used to probe Ib reflexes in muscles engaged in standing balance. These results provide novel evidence that human short-latency GTO-Ib reflexes are dependent upon both task, as evidenced by changes with postural orientation, and context, such as height-induced postural threat during standing., Abstract: Golgi tendon organ Ib reflexes are thought to contribute to standing balance control, but it is unknown if they are modulated when people are exposed to a postural threat. We used a novel application of tendon electrical stimulation (TStim) to elicit Ib inhibitory reflexes in the medial gastrocnemius, while actively engaged in upright standing balance, to examine (a) how Ib reflexes to TStim are influenced by upright stance, and (b) the effects of height-induced postural threat on Ib reflexes during standing. TStim evoked short-latency (<47 ms) inhibition apparent in trigger-averaged rectified EMG, which was quantified in terms of area, duration and mean amplitude of inhibition. In order to validate the use of TStim in a standing model, TStim-Ib inhibition was compared from conditions where participants were lying prone vs. standing upright. TStim evoked Ib inhibition in both conditions; however, significant reductions in Ib inhibition area (42.2%) and duration (32.9%) were observed during stance. Postural threat, manipulated by having participants stand at LOW (0.8 m high, 0.6 m from edge) and HIGH (3.2 m, at edge) elevated surfaces, significantly reduced Ib inhibition area (32.4%), duration (16.4%) and amplitude (24.8%) in the HIGH, compared to LOW, threat condition. These results demonstrate TStim is a viable technique for investigating Ib reflexes in standing, and confirm Ib reflexes are modulated with postural orientation. The novel observation of reduced Ib inhibition with elevated postural threat reveals that human Ib reflexes are context dependent, and the human Ib reflex pathways are modulated by threat or emotional processing centres of the CNS., (© 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.)
- Published
- 2017
- Full Text
- View/download PDF
30. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.
- Author
-
Mildren RL, Peters RM, Hill AJ, Blouin JS, Carpenter MG, and Inglis JT
- Subjects
- Adult, Electromyography methods, Female, Humans, Male, Postural Balance physiology, Posture physiology, Reaction Time physiology, Vibration, Achilles Tendon physiology, Muscle, Skeletal physiology, Reflex, Stretch physiology
- Abstract
Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with <60 s of low-level (root mean square = 10 m/s
2 ) vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and coherence positively scaled with increases in stimulus amplitude. Our findings suggest that noisy tendon vibration, along with linear systems analysis, is an effective novel approach to study somatosensory reflex actions in active muscles., (Copyright © 2017 the American Physiological Society.)- Published
- 2017
- Full Text
- View/download PDF
31. Postural threat influences vestibular-evoked muscular responses.
- Author
-
Lim SB, Cleworth TW, Horslen BC, Blouin JS, Inglis JT, and Carpenter MG
- Subjects
- Adult, Electromyography, Female, Humans, Male, Young Adult, Evoked Potentials, Auditory physiology, Muscle, Skeletal physiology, Postural Balance physiology, Posture physiology, Vestibule, Labyrinth physiology
- Abstract
Standing balance is significantly influenced by postural threat. While this effect has been well established, the underlying mechanisms of the effect are less understood. The involvement of the vestibular system is under current debate, and recent studies that investigated the effects of height-induced postural threat on vestibular-evoked responses provide conflicting results based on kinetic (Horslen BC, Dakin CJ, Inglis JT, Blouin JS, Carpenter MG. J Physiol 592: 3671-3685, 2014) and kinematic (Osler CJ, Tersteeg MC, Reynolds RF, Loram ID. Eur J Neurosci 38: 3239-3247, 2013) data. We examined the effect of threat of perturbation, a different form of postural threat, on coupling (cross-correlation, coherence, and gain) of the vestibulo-muscular relationship in 25 participants who maintained standing balance. In the "No-Threat" conditions, participants stood quietly on a stable surface. In the "Threat" condition, participants' balance was threatened with unpredictable mediolateral support surface tilts. Quiet standing immediately before the surface tilts was compared to an equivalent time from the No-Threat conditions. Surface EMG was recorded from bilateral trunk, hip, and leg muscles. Hip and leg muscles exhibited significant increases in peak cross-correlation amplitudes, coherence, and gain (1.23-2.66×) in the Threat condition compared with No-Threat conditions, and significant correlations were observed between threat-related changes in physiological arousal and medium-latency peak cross-correlation amplitude in medial gastrocnemius (r = 0.408) muscles. These findings show a clear threat effect on vestibular-evoked responses in muscles in the lower body, with less robust effects of threat on trunk muscles. Combined with previous work, the present results can provide insight into observed changes during balance control in threatening situations., New & Noteworthy: This is the first study to show increases in vestibular-evoked responses of the lower body muscles under conditions of increased threat of postural perturbation. While robust findings were observed in hip and leg muscles, less consistent results were found in muscles of the trunk. The present findings provide further support in the ongoing debate for arguments that vestibular-evoked balance responses are influenced by fear and anxiety and explain previous threat-related changes in balance., (Copyright © 2017 the American Physiological Society.)
- Published
- 2017
- Full Text
- View/download PDF
32. Keeping still doesn't "make sense": examining a role for movement variability by stabilizing the arm during a postural control task.
- Author
-
Murnaghan CD, Carpenter MG, Chua R, and Inglis JT
- Subjects
- Acceleration, Adult, Analysis of Variance, Feedback, Sensory physiology, Female, Humans, Male, Nonlinear Dynamics, Range of Motion, Articular physiology, Young Adult, Arm physiology, Movement physiology, Postural Balance physiology, Posture physiology
- Abstract
Small-amplitude, higher frequency oscillations of the body or limb are typically observed when humans attempt to maintain the position of a body or limb in space. Recent investigations have suggested that these involuntary movements of the body during stance could be used as an exploratory means of acquiring sensory information. In the present study, we wanted to determine whether a similar phenomenon would be observed in an upper limb postural task that does not involve whole body postural control. Participants were placed in a supine position with the arm pointing vertically and were asked to maintain the position of the limb in space with and without visual feedback. The wrist was attached to an apparatus that allowed the experimenter to stabilize or "lock" movements of the arm without the participants' awareness. When participants were "locked," the forces recorded predicted greater accelerations than those observed when the arm was freely moving with and without visual feedback. From unlocked to locked, angular accelerations increased in the eyes-closed condition and when participants were provided visual feedback of arm angular displacements. Irrespective of their origin, small displacements of the limb may be used as an exploratory means of acquiring sensory information from the surrounding environment. NEW & NOTEWORTHY The role of movement variability during a static limb position task is currently unknown. We tested whether variability remains in the absence of sensory-based error with an apparatus that stabilized the limb without the participant's knowledge during a static postural task. Increased forces observed during arm stabilization predicted movements greater than those observed when not externally stabilized. These results suggest movement variability during static postures could facilitate the gathering of sensory information from the surrounding environment., (Copyright © 2017 the American Physiological Society.)
- Published
- 2017
- Full Text
- View/download PDF
33. Losing touch: age-related changes in plantar skin sensitivity, lower limb cutaneous reflex strength, and postural stability in older adults.
- Author
-
Peters RM, McKeown MD, Carpenter MG, and Inglis JT
- Subjects
- Adult, Aged, Aged, 80 and over, Electromyography, Female, Humans, Male, Middle Aged, Muscle, Skeletal physiology, Physical Stimulation, Sensory Thresholds physiology, Vibration, Young Adult, Aging physiology, Lower Extremity physiology, Postural Balance physiology, Reflex physiology, Skin Physiological Phenomena, Touch physiology
- Abstract
Age-related changes in the density, morphology, and physiology of plantar cutaneous receptors negatively impact the quality and quantity of balance-relevant information arising from the foot soles. Plantar perceptual sensitivity declines with age and may predict postural instability; however, alteration in lower limb cutaneous reflex strength may also explain greater instability in older adults and has yet to be investigated. We replicated the age-related decline in sensitivity by assessing monofilament and vibrotactile (30 and 250 Hz) detection thresholds near the first metatarsal head bilaterally in healthy young and older adults. We additionally applied continuous 30- and 250-Hz vibration to drive mechanically evoked reflex responses in the tibialis anterior muscle, measured via surface electromyography. To investigate potential relationships between plantar sensitivity, cutaneous reflex strength, and postural stability, we performed posturography in subjects during quiet standing without vision. Anteroposterior and mediolateral postural stability decreased with age, and increases in postural sway amplitude and frequency were significantly correlated with increases in plantar detection thresholds. With 30-Hz vibration, cutaneous reflexes were observed in 95% of young adults but in only 53% of older adults, and reflex gain, coherence, and cumulant density at 30 Hz were lower in older adults. Reflexes were not observed with 250-Hz vibration, suggesting this high-frequency cutaneous input is filtered out by motoneurons innervating tibialis anterior. Our findings have important implications for assessing the risk of balance impairment in older adults., (Copyright © 2016 the American Physiological Society.)
- Published
- 2016
- Full Text
- View/download PDF
34. Vestibulo-spinal and vestibulo-ocular reflexes are modulated when standing with increased postural threat.
- Author
-
Naranjo EN, Cleworth TW, Allum JH, Inglis JT, Lea J, Westerberg BD, and Carpenter MG
- Subjects
- Adult, Evoked Potentials, Motor, Eye Movements, Female, Humans, Male, Muscle, Skeletal innervation, Muscle, Skeletal physiology, Postural Balance, Vestibular Nuclei physiology, Vestibule, Labyrinth innervation, Arousal, Posture, Reflex, Vestibulo-Ocular, Spinal Cord physiology, Vestibule, Labyrinth physiology
- Abstract
We investigated how vestibulo-spinal reflexes (VSRs) and vestibulo-ocular reflexes (VORs) measured through vestibular evoked myogenic potentials (VEMPs) and video head impulse test (vHIT) outcomes, respectively, are modulated during standing under conditions of increased postural threat. Twenty-five healthy young adults stood quietly at low (0.8 m from the ground) and high (3.2 m) surface height conditions in two experiments. For the first experiment (n = 25) VEMPs were recorded with surface EMG from inferior oblique (IO), sternocleidomastoid (SCM), trapezius (TRP), and soleus (SOL) muscles in response to 256 air-conducted short tone bursts (125 dB SPL, 500 Hz, 4 ms) delivered via headphones. A subset of subjects (n = 19) also received horizontal and vertical head thrusts (∼150°/s) at each height in a separate session, comparing eye and head velocities by using a vHIT system for calculating the functional VOR gains. VEMP amplitudes (IO, TRP, SOL) and horizontal and vertical vHIT gains all increased with high surface height conditions (P < 0.05). Changes in IO and SCM VEMP amplitudes as well as horizontal vHIT gains were correlated with changes in electrodermal activity (ρ = 0.44-0.59, P < 0.05). VEMP amplitude for the IO also positively correlated with fear (ρ = 0.43, P = 0.03). Threat-induced anxiety, fear, and arousal have significant effects on VSR and VOR gains that can be observed in both physiological and functional outcome measures. These findings provide support for a potential central modulation of the vestibular nucleus complex through excitatory inputs from neural centers involved in processing fear, anxiety, arousal, and vigilance., (Copyright © 2016 the American Physiological Society.)
- Published
- 2016
- Full Text
- View/download PDF
35. Response to 'Diagnostic accuracy of common clinical tests for assessing abdominal muscle function after motor-complete spinal cord injury above T6'.
- Author
-
Bjerkefors A, Squair JW, Malik R, Lam T, Chen Z, and Carpenter MG
- Subjects
- Female, Humans, Male, Abdominal Muscles physiopathology, Spinal Cord Injuries diagnosis, Spinal Cord Injuries physiopathology
- Published
- 2015
- Full Text
- View/download PDF
36. CrossTalk proposal: Fear of falling does influence vestibular-evoked balance responses.
- Author
-
Horslen BC, Dakin CJ, Inglis JT, Blouin JS, and Carpenter MG
- Subjects
- Humans, Accidental Falls, Evoked Potentials, Somatosensory, Fear, Postural Balance, Vestibule, Labyrinth physiology
- Published
- 2015
- Full Text
- View/download PDF
37. Rebuttal from Brian C. Horslen, Christopher J. Dakin, J. Timothy Inglis, Jean-Sébastien Blouin and Mark G. Carpenter.
- Author
-
Horslen BC, Dakin CJ, Inglis JT, Blouin JS, and Carpenter MG
- Subjects
- Humans, Accidental Falls, Evoked Potentials, Somatosensory, Fear, Postural Balance, Vestibule, Labyrinth physiology
- Published
- 2015
- Full Text
- View/download PDF
38. Diagnostic accuracy of common clinical tests for assessing abdominal muscle function after motor-complete spinal cord injury above T6.
- Author
-
Bjerkefors A, Squair JW, Malik R, Lam T, Chen Z, and Carpenter MG
- Subjects
- Abdominal Muscles diagnostic imaging, Adult, Chronic Disease, Electromyography methods, Female, Humans, Isometric Contraction physiology, Male, Motor Activity physiology, Organ Size, Physical Examination methods, Sensitivity and Specificity, Spinal Cord Injuries diagnostic imaging, Ultrasonography, Abdominal Muscles physiopathology, Spinal Cord Injuries diagnosis, Spinal Cord Injuries physiopathology
- Abstract
Study Design: Diagnostic study., Objectives: The objective of this study was to compare patterns of electromyography (EMG) recordings of abdominal muscle function in persons with motor-complete spinal cord injury (SCI) above T6 and in able-bodied controls, and to determine whether manual examination or ultrasound measures of muscle activation can be accurate alternatives to EMG., Setting: Research center focused on SCI and University laboratory, Vancouver, Canada., Methods: Thirteen people with SCI (11 with American Spinal Injury Association Impairment Scale (AIS) A and 2 AIS B; C4-T5), and 13 matched able-bodied participants volunteered for the study. Participants completed trunk tasks during manual examination of the abdominal muscles and then performed maximal voluntary isometric contractions, while EMG activity and muscle thickness changes were recorded. The frequency of muscle responses detected by manual examination and ultrasound were compared with detection by EMG (sensitivity and specificity)., Results: All individuals with SCI were able to elicit EMG activity above resting levels in at least one abdominal muscle during one task. In general, the activation pattern was task specific, confirming voluntary control of the muscles. Ultrasound, when compared with EMG, showed low sensitivity but was highly specific in its ability to detect preserved abdominal muscle function in persons with SCI. Conversely, manual examination was more sensitive than ultrasound but showed lower specificity., Conclusion: The results from this study confirm preserved voluntary abdominal muscle function in individuals classified with motor-complete SCI above T6 and highlight the need for further research in developing more accurate clinical measures to diagnose the level of trunk muscle preservation in individuals with SCI.
- Published
- 2015
- Full Text
- View/download PDF
39. Modulation of human vestibular reflexes with increased postural threat.
- Author
-
Horslen BC, Dakin CJ, Inglis JT, Blouin JS, and Carpenter MG
- Subjects
- Adult, Fear, Female, Humans, Male, Posture, Vestibule, Labyrinth innervation, Arousal, Postural Balance, Reflex, Vestibular Nuclei physiology, Vestibule, Labyrinth physiology
- Abstract
Anxiety and arousal have been shown to facilitate human vestibulo-ocular reflexes, presumably through direct neural connections between the vestibular nuclei and emotional processing areas of the brain. However, the effects of anxiety, fear and arousal on balance-relevant vestibular reflexes are currently unknown. The purpose of this study was to manipulate standing height to determine whether anxiety and fear can modulate the direct relationship between vestibular signals and balance reflexes during stance. Stochastic vestibular stimulation (SVS; 2-25 Hz) was used to evoke ground reaction forces (GRF) while subjects stood in both LOW and HIGH surface height conditions. Two separate experiments were conducted to investigate the SVS-GRF relationship, in terms of coupling (coherence and cumulant density) and gain, in the medio-lateral (ML) and antero-posterior (AP) directions. The short- and medium-latency cumulant density peaks were both significantly increased in the ML and AP directions when standing in HIGH, compared to LOW, conditions. Likewise, coherence was statistically greater between 4.3 Hz and 6.7 Hz in the ML, and between 5.5 and 17.7 Hz in the AP direction. When standing in the HIGH condition, the gain of the SVS-GRF relationship was increased 81% in the ML direction, and 231% in the AP direction. The significant increases in coupling and gain observed in both experiments demonstrate that vestibular-evoked balance responses are augmented in states of height-induced postural threat. These data support the possibility that fear or anxiety-mediated changes to balance control are affected by altered central processing of vestibular information., (© 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.)
- Published
- 2014
- Full Text
- View/download PDF
40. Validity and reliability of the community balance and mobility scale in individuals with knee osteoarthritis.
- Author
-
Takacs J, Garland SJ, Carpenter MG, and Hunt MA
- Subjects
- Aged, Cross-Sectional Studies, Female, Humans, Male, Middle Aged, Reproducibility of Results, Exercise Test methods, Knee Joint physiopathology, Osteoarthritis, Knee physiopathology, Postural Balance physiology
- Abstract
Background: There is a high incidence of falls in older adults with knee osteoarthritis (OA). Adequate dynamic balance and mobility reduce the risk of falls; however, there are currently no validated, advanced tests of dynamic balance and mobility for individuals with knee OA., Objective: The purpose of this study was to determine the convergent validity, known-groups validity, and test-retest reliability of a dynamic test of balance and mobility, the Community Balance and Mobility Scale (CB&M), in a knee OA population., Design: A cross-sectional design was used., Methods: Twenty-five individuals aged 50 years and older with medial knee OA and an equal number of healthy controls completed the CB&M and other tests of balance and mobility, including the Berg Balance Scale, the Timed "Up & Go" Test, a test of maximal single-leg stance time, and the 10-Meter Walk Test (self-selected and fast walking speed). Convergent validity of balance tests with the CB&M was assessed using Pearson product moment correlation coefficients, and known-groups validity was assessed using independent t tests. Test-retest reliability of the CB&M was assessed using intraclass correlation coefficients (ICCs) and standard error of measurement (SEM)., Results: Scores on the CB&M were significantly correlated with all measures of balance and mobility for those with knee OA. There were significant differences in CB&M scores between groups. Scores on the CB&M were highly reliable in people with knee OA (ICC=.95, 95% confidence interval [95% CI]=0.70 to 0.99; SEM=3, 95% CI=2.68 to 4.67)., Limitations: Few participants had severe knee OA., Conclusions: The CB&M displayed moderate convergent validity, excellent known-groups validity, and high test-retest reliability. The CB&M can be used as a valid and reliable tool to assess dynamic balance and mobility deficits in people with knee OA., (© 2014 American Physical Therapy Association.)
- Published
- 2014
- Full Text
- View/download PDF
41. Cortical contributions to control of posture during unrestricted and restricted stance.
- Author
-
Murnaghan CD, Squair JW, Chua R, Inglis JT, and Carpenter MG
- Subjects
- Adult, Female, Humans, Male, Muscle, Skeletal innervation, Muscle, Skeletal physiology, Restraint, Physical, Motor Cortex physiology, Movement, Postural Balance
- Abstract
There is very little consensus regarding the mechanisms underlying postural control. Whereas some theories suggest that posture is controlled at lower levels (i.e., brain stem and spinal cord), other theories have proposed that upright stance is controlled using higher centers, including the motor cortex. In the current investigation, we used corticomuscular coherence (CMC) to investigate the relationship between cortical and shank muscle activity during conditions of unrestricted and restricted postural sway. Participants were instructed to stand as still as possible in an apparatus that allowed the center of mass to move freely ("Unlocked") or to be stabilized ("Locked") without subject awareness. EEG (Cz) and electromyography (soleus and lateral/medial gastrocnemii) were collected and used to estimate CMC over the Unlocked and Locked periods. Confirming our previous results, increases in center of pressure (COP) displacements were observed in 9 of 12 participants in the Locked compared with Unlocked condition. Across these 9 participants, CMC was low or absent in both the Unlocked and Locked conditions. The results from the current study suggest that this increase is not associated with an increase in the relationship between cortical and shank muscle activities. Rather, it may be that increases in COP displacement with locking are mediated by subcortical structures as a means of increasing sway to provide the central nervous system with a critical level of sensory information.
- Published
- 2014
- Full Text
- View/download PDF
42. First trial and StartReact effects induced by balance perturbations to upright stance.
- Author
-
Campbell AD, Squair JW, Chua R, Inglis JT, and Carpenter MG
- Subjects
- Adult, Biomechanical Phenomena, Female, Humans, Male, Muscle, Skeletal physiology, Postural Balance, Reflex, Startle
- Abstract
Postural responses (PR) to a balance perturbation differ between the first and subsequent perturbations. One explanation for this first trial effect is that perturbations act as startling stimuli that initiate a generalized startle response (GSR) as well as the PR. Startling stimuli, such as startling acoustic stimuli (SAS), are known to elicit GSRs, as well as a StartReact effect, in which prepared movements are initiated earlier by a startling stimulus. In this study, a StartReact effect paradigm was used to determine if balance perturbations can also act as startle stimuli. Subjects completed two blocks of simple reaction time trials involving wrist extension to a visual imperative stimulus (IS). Each block included 15 CONTROL trials that involved a warning cue and subsequent IS, followed by 10 repeated TEST trials, where either a SAS (TESTSAS) or a toes-up support-surface rotation (TESTPERT) was presented coincident with the IS. StartReact effects were observed during the first trial in both TESTSAS and TESTPERT conditions as evidenced by significantly earlier wrist movement and muscle onsets compared with CONTROL. Likewise, StartReact effects were observed in all repeated TESTSAS and TESTPERT trials. In contrast, GSRs in sternocleidomastoid and PRs were large in the first trial, but significantly attenuated over repeated presentation of the TESTPERT trials. Results suggest that balance perturbations can act as startling stimuli. Thus first trial effects are likely PRs which are superimposed with a GSR that is initially large, but habituates over time with repeated exposure to the startling influence of the balance perturbation.
- Published
- 2013
- Full Text
- View/download PDF
43. Effects of postural threat on spinal stretch reflexes: evidence for increased muscle spindle sensitivity?
- Author
-
Horslen BC, Murnaghan CD, Inglis JT, Chua R, and Carpenter MG
- Subjects
- Arousal, Electromyography, Female, Galvanic Skin Response, Humans, Male, Young Adult, Adaptation, Physiological, H-Reflex, Muscle Spindles physiology, Postural Balance, Reflex, Stretch
- Abstract
Standing balance is often threatened in everyday life. These threats typically involve scenarios in which either the likelihood or the consequence of falling is higher than normal. When cats are placed in these scenarios they respond by increasing the sensitivity of muscle spindles imbedded in the leg muscles, presumably to increase balance-relevant afferent information available to the nervous system. At present, it is unknown whether humans also respond to such postural threats by altering muscle spindle sensitivity. Here we present two studies that probed the effects of postural threat on spinal stretch reflexes. In study 1 we manipulated the threat associated with an increased consequence of a fall by having subjects stand at the edge of an elevated surface (3.2 m). In study 2 we manipulated the threat by increasing the likelihood of a fall by occasionally tilting the support surface on which subjects stood. In both scenarios we used Hoffmann (H) and tendon stretch (T) reflexes to probe the spinal stretch reflex circuit of the soleus muscle. We observed increased T-reflex amplitudes and unchanged H-reflex amplitudes in both threat scenarios. These results suggest that the synaptic state of the spinal stretch reflex is unaffected by postural threat and that therefore the muscle spindles activated in the T-reflexes must be more sensitive in the threatening conditions. We propose that this increase in sensitivity may function to satisfy the conflicting needs to restrict movement with threat, while maintaining a certain amount of sensory information related to postural control.
- Published
- 2013
- Full Text
- View/download PDF
44. The role of neuromuscular changes in aging and knee osteoarthritis on dynamic postural control.
- Author
-
Takacs J, Carpenter MG, Garland SJ, and Hunt MA
- Abstract
Knee osteoarthritis (OA) is a chronic joint condition, with 30% of those over the age of 75 exhibiting severe radiographic disease. Nearly 50% of those with knee OA have experienced a fall in the past year. Falls are a considerable public health concern, with a high risk of serious injury and a significant socioeconomic impact. The ability to defend against a fall relies on adequate dynamic postural control, and alterations in dynamic postural control are seen with normal aging. Neuromuscular changes associated with aging may be responsible for some of these alterations in dynamic postural control. Even greater neuromuscular deficits, which may impact dynamic postural control and the ability to defend against a fall, are seen in people with knee OA. There is little evidence to date on how knee OA affects the ability to respond to and defend against falls and the neuromuscular changes that contribute to balance deficits. As a result, this review will: summarize the key characteristics of postural responses to an external perturbation, highlight the changes in dynamic postural control seen with normal aging, review the neuromuscular changes associated with aging that have known and possible effects on dynamic postural control, and summarize the neuromuscular changes and balance problems in knee OA. Future research to better understand the role of neuromuscular changes in knee OA and their effect on dynamic postural control will be suggested. Such an understanding is critical to the successful creation and implementation of fall prevention and treatment programs, in order to reduce the excessive risk of falling in knee OA.
- Published
- 2013
45. Startle induces early initiation of classically conditioned postural responses.
- Author
-
Campbell AD, Chua R, Inglis JT, and Carpenter MG
- Subjects
- Acoustic Stimulation, Adult, Ankle physiology, Biomechanical Phenomena, Cues, Electromyography, Female, Hip physiology, Humans, Knee physiology, Male, Muscle, Skeletal physiology, Psychomotor Performance, Conditioning, Classical physiology, Posture physiology, Reflex, Startle physiology
- Abstract
Startling acoustic stimuli (SAS) induce the early release of prepared motor responses. The current study used SAS, in conjunction with a classical conditioning paradigm, to examine advanced motor preparation of conditioned postural responses (PRs). After generalized startle responses were induced, standing posture was perturbed in 2 blocks of 15 Conditioning trials, where in each trial the onset of a nonstartling auditory cue [i.e., a conditioned stimulus (CS)] preceded a leftward support-surface translation. Upon completion of each block, a single trial was conducted. After block 1, a CS-Only trial was used to induce conditioned PRs in the absence of balance perturbations. After block 2, a post-Conditioning Startle trial that involved a CS subsequently followed by a SAS was used to examine motor preparation of conditioned PRs. PRs were quantified in terms of center of pressure displacements, ankle and hip kinematics, as well as surface electromyography of proximal and distal bilateral muscle pairs. Results indicated that repeated experience with cued balance perturbations led to PR conditioning and, more importantly, motor preparation of PRs. Conditioning was evidenced in biomechanical and electromyographic responses observed in CS-Only trials, as well as the progressive changes to evoked response parameters during repeated Conditioning trials. SAS presented in post-Conditioning Startle trials evoked early onsets of biomechanical and electromyographic responses, while preserving relative response parameters that were each distinct from generalized startle responses. These results provide important insight into both the consequences of using cues in dynamic postural control studies and the neural mechanisms governing PRs.
- Published
- 2012
- Full Text
- View/download PDF
46. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.
- Author
-
Houldin A, Chua R, Carpenter MG, and Lam T
- Subjects
- Adult, Biomechanical Phenomena, Electromyography, Female, Functional Laterality physiology, Gait physiology, Hip physiology, Humans, Male, Orthotic Devices, Young Adult, Adaptation, Physiological, Leg physiology, Walking physiology
- Abstract
Several studies have demonstrated that motor adaptations to a novel task environment can be transferred between limbs. Such interlimb transfer of motor commands is consistent with the notion of centrally driven strategies that can be generalized across different frames of reference. So far, studies of interlimb transfer of locomotor adaptations have yielded disparate results. Here we sought to determine whether locomotor adaptations in one (trained) leg show transfer to the other (test) leg during a unipedal walking task. We hypothesized that adaptation in the test leg to a velocity-dependent force field previously experienced by the trained leg will be faster, as revealed by faster recovery of kinematic errors and earlier onset of aftereffects. Twenty able-bodied adults walked unipedally in the Lokomat robotic gait orthosis, which applied velocity-dependent resistance to the legs. The amount of resistance was scaled to 10% of each individual's maximum voluntary contraction of the hip flexors. Electromyography and kinematics of the lower limb were recorded. All subjects were right-leg dominant and were tested for transfer of motor adaptations from the right leg to the left leg. Catch trials, consisting of unexpected removal of resistance, were presented after the first step with resistance and after a period of adaptation to test for aftereffects. We found no significant differences in the sizes of the aftereffects between the two legs, except for peak hip flexion during swing, or in the rate at which peak hip flexion adapted during steps against resistance between the two legs. Our results indicate that interlimb transfer of these types of locomotor adaptation is not a robust phenomenon. These findings add to our current understanding of motor adaptations and provide further evidence that generalization of adaptations may be dependent on the movement task.
- Published
- 2012
- Full Text
- View/download PDF
47. Human proprioceptive adaptations during states of height-induced fear and anxiety.
- Author
-
Davis JR, Horslen BC, Nishikawa K, Fukushima K, Chua R, Inglis JT, and Carpenter MG
- Subjects
- Analysis of Variance, Electroencephalography, Electromyography, Evoked Potentials, Somatosensory physiology, Female, Galvanic Skin Response, Humans, Male, Physical Stimulation methods, Posture physiology, Psychiatric Status Rating Scales, Psychometrics, Psychophysics, Reflex physiology, Tendons innervation, Young Adult, Adaptation, Physiological physiology, Altitude, Anxiety physiopathology, Fear psychology, Proprioception physiology
- Abstract
Clinical and experimental research has demonstrated that the emotional experience of fear and anxiety impairs postural stability in humans. The current study investigated whether changes in fear and anxiety can also modulate spinal stretch reflexes and the gain of afferent inputs to the primary somatosensory cortex. To do so, two separate experiments were performed on two separate groups of participants while they stood under conditions of low and high postural threat. In experiment 1, the proprioceptive system was probed using phasic mechanical stimulation of the Achilles tendon while simultaneously recording the ensuing tendon reflexes in the soleus muscle and cortical-evoked potentials over the somatosensory cortex during low and high threat conditions. In experiment 2, phasic electrical stimulation of the tibial nerve was used to examine the effect of postural threat on somatosensory evoked potentials. Results from experiment 1 demonstrated that soleus tendon reflex excitability was facilitated during states of height-induced fear and anxiety while the magnitude of the tendon-tap-evoked cortical potential was not significantly different between threat conditions. Results from experiment 2 demonstrated that the amplitudes of somatosensory-evoked potentials were also unchanged between threat conditions. The results support the hypothesis that muscle spindle sensitivity in the triceps surae muscles may be facilitated when humans stand under conditions of elevated postural threat, although the presumed increase in spindle sensitivity does not result in higher afferent feedback gain at the level of the somatosensory cortex.
- Published
- 2011
- Full Text
- View/download PDF
48. Sway-dependent modulation of the triceps surae H-reflex during standing.
- Author
-
Tokuno CD, Garland SJ, Carpenter MG, Thorstensson A, and Cresswell AG
- Subjects
- Adult, Biomechanical Phenomena, Data Interpretation, Statistical, Electromyography, Humans, Male, H-Reflex physiology, Leg physiology, Muscle, Skeletal physiology, Posture physiology
- Abstract
Previous research has shown that changes in spinal excitability occur during the postural sway of quiet standing. In the present study, it was of interest to examine the independent effects of sway position and sway direction on the efficacy of the triceps surae Ia pathway, as reflected by the Hoffman (H)-reflex amplitude, during standing. Eighteen participants, tested under two different experimental protocols, stood quietly on a force platform. Percutaneous electrical stimulation was applied to the posterior tibial nerve when the position and direction of anteroposterior (A-P) center of pressure (COP) signal satisfied the criteria for the various experimental conditions. It was found that, regardless of sway position, a larger amplitude of the triceps surae H-reflex (difference of 9-14%; P = 0.005) occurred when subjects were swaying in the forward compared with the backward direction. The effects of sway position, independent of the sway direction, on spinal excitability exhibited a trend (P = 0.075), with an 8.9 +/- 3.7% increase in the H-reflex amplitude occurring when subjects were in a more forward position. The observed changes to the efficacy of the Ia pathway cannot be attributed to changes in stimulus intensity, as indicated by a constant M-wave amplitude, or to the small changes in the level of background electromyographic activity. One explanation for the changes in reflex excitability with respect to the postural sway of standing is that the neural modulation may be related to the small lengthening and shortening contractions occurring in the muscles of the triceps surae.
- Published
- 2008
- Full Text
- View/download PDF
49. Use of induced acceleration to quantify the (de)stabilization effect of external and internal forces on postural responses.
- Author
-
van Asseldonk EH, Carpenter MG, van der Helm FC, and van der Kooij H
- Subjects
- Adult, Computer Simulation, Female, Humans, Stress, Mechanical, Acceleration, Models, Biological, Movement physiology, Muscle Contraction physiology, Muscle, Skeletal physiology, Postural Balance physiology, Posture physiology
- Abstract
Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the Center of Mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies.
- Published
- 2007
- Full Text
- View/download PDF
50. Incorporating voluntary knee flexion into nonanticipatory balance corrections.
- Author
-
Oude Nijhuis LB, Bloem BR, Carpenter MG, and Allum JH
- Subjects
- Acoustic Stimulation methods, Adolescent, Adult, Arm innervation, Cues, Electromyography methods, Female, Humans, Male, Muscle, Skeletal innervation, Muscle, Skeletal physiology, Posture physiology, Proprioception physiology, Reaction Time physiology, Rotation, Adaptation, Physiological physiology, Knee, Movement physiology, Postural Balance, Volition physiology
- Abstract
Knee movements play a critical role in most balance corrections. Loss of knee flexibility may cause postural instability. Conversely, trained voluntary knee flexions executed during balance corrections might help to overcome balance deficits. We examined whether bilateral knee flexion could be added to automatic balance corrections generated by sudden balance perturbations. We investigated how this could be achieved and whether it improved or worsened balance control. Twenty-four healthy subjects participated in three different test conditions, in which they had to flex their knees following an auditory cue (VOLUNTARY condition), had to restore their balance in response to multidirectional rotations of a support surface (REACTIVE condition), or the combination of these two (COMBINED condition). A new variable set (PREDICTED), calculated as the mathematical sum of VOLUNTARY and REACTIVE, was compared with the COMBINED variable set. COMBINED responses following forward rotations were close to PREDICTED, or greater, suggesting adequate integration of knee flexion into the automatic balance reactions. For backward rotations, the COMBINED condition resulted in several near-falls, and this was generally associated with smaller knee flexion and smaller EMG responses. Subjects compensated by using greater trunk flexion and arm movements. Activity in several muscles displayed earlier onsets for the COMBINED condition following backward rotations. We conclude that healthy adults can incorporate voluntary knee flexion into their automatic balance corrections and that this depends on the direction of the postural perturbation. These findings highlight the flexibility of the human balance repertoire and underscore both the advantages and limitations of using trained voluntary movements to aid balance corrections in man.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.