1. Biochemical, genotoxic, histological and ultrastructural effects on liver and gills of fresh water fish Channa punctatus exposed to textile industry intermediate 2 ABS.
- Author
-
Sharma K, Sharma P, Dhiman SK, Chadha P, and Saini HS
- Subjects
- Animals, DNA Damage, Fresh Water, Kidney, Liver, Textile Industry, Gills, Water Pollutants, Chemical toxicity
- Abstract
The study was planned to assess the acute toxicity of textile industry intermediate, 2 amino benzene sulfonate (2 ABS) through biochemical, genotoxic, histopathological and ultrastructural (SEM) analysis in liver and gills of fresh water fish Channa punctatus. The fish were subjected to two sublethal concentrations (2.83 mg/30 g b. w. and 5.66 mg/30 g b. w.) for 96 h. A significant (p ≤ 0.05) increment in the enzymatic activity of catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) was observed followed by decline on CAT-SOD after 96 h of exposure in both the tissues, whereas increment in malondialdehyde (MDA) levels were observed throughout the exposure period for both the concentrations. Comet assay also showed elevated tail length and % tail DNA throughout the exposure period, marking maximum damage after 96 h for both the tissues. Light microscopy divulged several anomalies including: infiltration of lymphocytes, sinusoidal dilations, necrosis, vacuolation in liver and secondary lamellae fusion, telangiectasia and epithelial uplifting in gills. The highest degree of tissue change (DTC) in liver (50.33 ± 0.88) and gill (42.33 ± 2.18) was recorded with the highest concentration after 96 h of exposure. Scanning electron microscopy (SEM) also reaffirmed several alterations in liver and gills of fish. The findings of the present study inflict changes in liver and gills, marking the interference of 2 ABS with the normal functioning by suppressing the enzymatic activity, accelerating the lipid peroxidation, enhancing DNA damage and by disrupting normal architecture of liver and gills, making it toxic towards the fish even at sub-lethal concentrations., (Copyright © 2021 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF