1. Elucidating the barriers on direct water splitting: Key role of oxygen vacancy density and coordination over PbTiO$_3$ and TiO$_2$
- Author
-
Mete, Ersen, Ellialtıoğlu, Şinasi, Gulseren, Oguz, and Uner, Deniz
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Strongly Correlated Electrons - Abstract
In this work, using the state-of-the-art first principles calculations based on density functional theory, we found that the concentration as well as coordination of surface oxygen vacancies with respect to each other were critical for direct water-splitting reaction on the (001) surfaces of PbTiO$_3$ and TiO$_2$. For the water-splitting reaction to happen on TiO$_2$-terminated surfaces, it is necessary to have two neighboring O-vacancies acting as active sites that host two adsorbing water molecules. However, eventual dissociation of O-H bonds is possible only in the presence of an additional nearest-neighbor O-vacancy. Unfortunately, this necessary third vacancy inhibits the formation of molecular hydrogen by trapping the dissociated H atoms over TiO$_2$-teminated surfaces. Formation of up to 3 O-vacancies, is energetically less costly on both terminations of PbTiO$_3$ (001) surfaces compared with that of TiO$_2$, the presence of Pb leads to weaker O bonds over these surfaces. Molecular hydrogen formation is more favorable over the PbO-terminated surface of PbTiO$_3$, requiring only two neighboring oxygen vacancies. However, hydrogen molecule is retained near the surface by weak van der Waals forces. Our study indicates two barriers leading to low productivity of direct water splitting processes. First and foremost, there is an entropic barrier imposed by the requirement of at least two nearest-neighbor O-vacancies, sterically hindering the process. Furthermore, there are also enthalpic barriers of formation over TiO$_2$-terminated surfaces, or removal of H$_2$ molecules from the PbO-terminated surface., Comment: 12 pages, 5 figures
- Published
- 2020