1. APPLICATION OF DEEP LEARNING OF MULTI-TEMPORAL SENTINEL-1 IMAGES FOR THE CLASSIFICATION OF COASTAL VEGETATION ZONE OF THE DANUBE DELTA
- Author
-
Dino Ienco, Jenica Hanganu, Simona Niculescu, Niculescu, Simona, Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN), Université de Nantes (UN)-Université de Nantes (UN), Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), « Danube Delta » National Institute for Research and Development [Tulcea], Littoral, Environnement, Télédétection, Géomatique (LETG - Brest), Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Brest (UBO)-École pratique des hautes études (EPHE)-Université de Nantes (UN)-Université d'Angers (UA)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 2 (UR2), Normandie Université (NU)-Normandie Université (NU), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), Danube Delta, National Institute for Research and Development, Université de Nantes (UN)-Université de Nantes (UN)-Université de Caen Normandie (UNICAEN), Danube Delta National Institute for Research and Development, Iasie Roumanie, Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-Université de Nantes (UN)-École pratique des hautes études (EPHE), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
lcsh:Applied optics. Photonics ,010504 meteorology & atmospheric sciences ,Computer science ,[SHS.GEO] Humanities and Social Sciences/Geography ,0211 other engineering and technologies ,Image processing ,02 engineering and technology ,Land cover ,computer.software_genre ,01 natural sciences ,lcsh:Technology ,[SPI]Engineering Sciences [physics] ,ComputingMilieux_MISCELLANEOUS ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Contextual image classification ,business.industry ,lcsh:T ,Deep learning ,lcsh:TA1501-1820 ,[SHS.GEO]Humanities and Social Sciences/Geography ,15. Life on land ,Random forest ,Temporal database ,Recurrent neural network ,lcsh:TA1-2040 ,Data mining ,Artificial intelligence ,business ,lcsh:Engineering (General). Civil engineering (General) ,computer - Abstract
Land cover is a fundamental variable for regional planning, as well as for the study and understanding of the environment. This work propose a multi-temporal approach relying on a fusion of radar multi-sensor data and information collected by the latest sensor (Sentinel-1) with a view to obtaining better results than traditional image processing techniques. The Danube Delta is the site for this work. The spatial approach relies on new spatial analysis technologies and methodologies: Deep Learning of multi-temporal Sentinel-1. We propose a deep learning network for image classification which exploits the multi-temporal characteristic of Sentinel-1 data. The model we employ is a Gated Recurrent Unit (GRU) Network, a recurrent neural network that explicitly takes into account the time dimension via a gated mechanism to perform the final prediction. The main quality of the GRU network is its ability to consider only the important part of the information coming from the temporal data discarding the irrelevant information via a forgetting mechanism. We propose to use such network structure to classify a series of images Sentinel-1 (20 Sentinel-1 images acquired between 9.10.2014 and 01.04.2016). The results are compared with results of the classification of Random Forest.
- Published
- 2018
- Full Text
- View/download PDF