This study modeled monocrystalline (mono-Si), polycrystalline (poly-Si), and amorphous silicon (a-Si) Photovoltaic (PV) systems with a 300 kWp installed power using PVsyst software in Konya province, Turkey. The system's electricity generation was calculated and compared with different PV technologies. In addition, an economic analysis for a 25 year lifespan was made with the obtained data. The annual global horizontal radiation (GI) and effective global irradiation (GE) are found to be 2001.7 kWh/m² and 1949.6 kWh/m², respectively. The highest yearly total electricity production was obtained from mono-Si, with a value of 513.91 MWh. This value is 1.91% and 3.07% higher than poly-Si and a-Si, respectively. Since the Performance Ratio (PR) values are proportional to the generated electricity and incoming irradiation to the surface of the PV panels, it calculated 0.853, 0.847, and 0.830 for mono-Si, poly-Si, and a-Si, respectively. According to the basic payback method, the economic analysis showed that mono-Si and poly-Si pay off in about 5.8-5.9 years, while a-Si pays off in 9,1 years. A net profit of $1.5 million, $1.45 million, and $1.1 million was obtained from mono-Si, poly-Si, and a-Si, respectively. It was concluded that the ratio of income values to investment cost was 253%, 244.77%, and 126.6%, respectively. Therefore, it was concluded that mono-Si and poly-Si are economically quite feasible for small and medium-scale PV systems, but a-Si is still not feasible due to lower efficiency and higher costs. [ABSTRACT FROM AUTHOR]