32 results on '"Kathrin, Kiehl"'
Search Results
2. Challenges and opportunities for grassland restoration: A global perspective of best practices in the era of climate change
- Author
-
Kelly G. Lyons, Péter Török, Julia-Maria Hermann, Kathrin Kiehl, Anita Kirmer, Johannes Kollmann, Gerhard E. Overbeck, Sabine Tischew, Edith B. Allen, Jonathan D. Bakker, Christy Brigham, Elise Buisson, Kerri Crawford, Peter Dunwiddie, Jennifer Firn, Devin Grobert, Karen Hickman, Soizig LE Stradic, and Vicky M. Temperton
- Subjects
Carbon sequestration ,Climate adaptation ,Plant materials ,Soils ,Target species ,Landscape multifunctionality ,Ecology ,QH540-549.5 - Abstract
Grasslands are ubiquitous globally, and their conservation and restoration are critical to combat both the biodiversity and climate crises. There is increasing interest in implementing effective multifunctional grassland restoration to restore biodiversity concomitant with above- and belowground carbon sequestration, delivery of carbon credits and/or integration with land dedicated to solar panels. Other common multifunctional restoration considerations include improved forage value, erosion control, water management, pollinator services, and wildlife habitat provisioning. In addition, many grasslands are global biodiversity hotspots. Nonetheless, relative to their impact, and as compared to forests, the importance of preservation, conservation, and restoration of grasslands has been widely overlooked due to their subtle physiognomy and underappreciated contributions to human and planetary well-being. Ultimately, the global success of carbon sequestration will depend on more complete and effective grassland ecosystem restoration. In this review, supported by examples from across the Western world, we call for more strenuous and unified development of best practices for grassland restoration in three areas of concern: initial site conditions and site preparation; implementation of restoration measures and management; and social context and sustainability. For each area, we identify the primary challenges to grassland restoration and highlight case studies with proven results to derive successful and generalizable solutions.
- Published
- 2023
- Full Text
- View/download PDF
3. Effects of perennial wildflower strips and landscape structure on birds in intensively farmed agricultural landscapes
- Author
-
Annika Schmidt, Thomas Fartmann, Kathrin Kiehl, Anita Kirmer, and Sabine Tischew
- Subjects
agri-environment scheme ,arable field ,biodiversity conservation ,farmland bird ,flower strip ,native plant species ,Ecology ,QH540-549.5 - Abstract
Farmland bird populations are in a deep crisis across Europe. Agri-environment schemes (AES) were implemented by the European Union to stop and reverse the general decline of biodiversity in agricultural landscapes. In Germany, flower strips are one of the most common AES. Establishing high-quality perennial wildflower strips (WFS) with species-rich native forb mixtures from regional seed propagation is a recent approach, for which the effectiveness for birds has not yet been sufficiently studied. We surveyed breeding birds and vegetation on 40 arable fields with WFS (20 with single and 20 with aggregated WFS) and 20 arable fields lacking WFS as controls across Saxony-Anhalt (Germany). Additionally, vegetation composition, WFS quantity and landscape structure (e.g. distance to nearest woody element) were considered in our analyses. All WFS were established with species-rich native seed mixtures (30 forbs) in agricultural practice as AES. Arable fields with WFS had a higher species richness and territory density of birds than controls, confirming the effectiveness of this AES. A forb-rich vegetation was the main driver promoting birds. Flower strip quantity at the landscape level had positive effects only on bird densities, but also single WFS achieved benefits. A short distance from WFS to woody elements increased total bird species richness. However, the density of farmland birds, which are target species of these AES, were negatively affected by the proximity and proportion of woody elements in the vicinity. The effect of the proportion of non-intensively used open habitats and overall habitat richness was unexpectedly low in the otherwise intensively farmed landscape. Species-rich perennial WFS significantly promoted breeding birds. Successful establishment of WFS, resulting in high-quality habitats, a high flower strip quantity as well as implementation in open landscapes were shown to maximise the effectiveness for restoring declining and AES target farmland birds.
- Published
- 2022
- Full Text
- View/download PDF
4. Convolutional Neural Network Maps Plant Communities in Semi-Natural Grasslands Using Multispectral Unmanned Aerial Vehicle Imagery
- Author
-
Maren Pöttker, Kathrin Kiehl, Thomas Jarmer, and Dieter Trautz
- Subjects
convolutional neural networks (CNNs) ,remote sensing ,unmanned aerial vehicles (UAVs) ,semi-natural grasslands ,plant communities ,Science - Abstract
Semi-natural grasslands (SNGs) are an essential part of European cultural landscapes. They are an important habitat for many animal and plant species and offer a variety of ecological functions. Diverse plant communities have evolved over time depending on environmental and management factors in grasslands. These different plant communities offer multiple ecosystem services and also have an effect on the forage value of fodder for domestic livestock. However, with increasing intensification in agriculture and the loss of SNGs, the biodiversity of grasslands continues to decline. In this paper, we present a method to spatially classify plant communities in grasslands in order to identify and map plant communities and weed species that occur in a semi-natural meadow. For this, high-resolution multispectral remote sensing data were captured by an unmanned aerial vehicle (UAV) in regular intervals and classified by a convolutional neural network (CNN). As the study area, a heterogeneous semi-natural hay meadow with first- and second-growth vegetation was chosen. Botanical relevés of fixed plots were used as ground truth and independent test data. Accuracies up to 88% on these independent test data were achieved, showing the great potential of the usage of CNNs for plant community mapping in high-resolution UAV data for ecological and agricultural applications.
- Published
- 2023
- Full Text
- View/download PDF
5. Effects of perennial wildflower strips and landscape structure on birds in intensively farmed agricultural landscapes
- Author
-
Sabine Tischew, Anita Kirmer, Kathrin Kiehl, Annika Schmidt, and Thomas Fartmann
- Subjects
Geography ,Habitat ,Wildflower ,Agroforestry ,Biodiversity ,Forb ,media_common.cataloged_instance ,Vegetation ,Species richness ,Arable land ,European union ,Ecology, Evolution, Behavior and Systematics ,media_common - Abstract
Farmland bird populations are in a deep crisis across Europe. Agri-environment schemes (AES) were implemented by the European Union to stop and reverse the general decline of biodiversity in agricultural landscapes. In Germany, flower strips are one of the most common AES. Establishing high-quality perennial wildflower strips (WFS) with species-rich native forb mixtures from regional seed propagation is a recent approach, for which the effectiveness for birds has not yet been sufficiently studied. We surveyed breeding birds and vegetation on 40 arable fields with WFS (20 with single and 20 with aggregated WFS) and 20 arable fields lacking WFS as controls across Saxony-Anhalt (Germany). Additionally, vegetation composition, WFS quantity and landscape structure (e.g. distance to nearest woody element) were considered in our analyses. All WFS were established with species-rich native seed mixtures (30 forbs) in agricultural practice as AES. Arable fields with WFS had a higher species richness and territory density of birds than controls, confirming the effectiveness of this AES. A forb-rich vegetation was the main driver promoting birds. Flower strip quantity at the landscape level had positive effects only on bird densities, but also single WFS achieved benefits. A short distance from WFS to woody elements increased total bird species richness. However, the density of farmland birds, which are target species of these AES, were negatively affected by the proximity and proportion of woody elements in the vicinity. The effect of the proportion of non-intensively used open habitats and overall habitat richness was unexpectedly low in the otherwise intensively farmed landscape. Species-rich perennial WFS significantly promoted breeding birds. Successful establishment of WFS, resulting in high-quality habitats, a high flower strip quantity as well as implementation in open landscapes were shown to maximise the effectiveness for restoring declining and AES target farmland birds.
- Published
- 2022
- Full Text
- View/download PDF
6. Evaluating CAP wildflower strips: High‐quality seed mixtures significantly improve plant diversity and related pollen and nectar resources
- Author
-
Annika Schmidt, Kathrin Kiehl, Sabine Tischew, Anita Kirmer, and Niels Hellwig
- Subjects
Ecology - Published
- 2022
- Full Text
- View/download PDF
7. Are natural floods accelerators for streambank vegetation development in floodplain restoration?
- Author
-
Barbara Stammel, Julia Stäps, André Schwab, and Kathrin Kiehl
- Subjects
Aquatic Science ,Ecology, Evolution, Behavior and Systematics - Published
- 2021
- Full Text
- View/download PDF
8. Testing standard growth substrates for establishing native dry sandy grassland species on extensive green roofs in Northern Germany
- Author
-
Roland Schröder and Kathrin Kiehl
- Subjects
chemistry.chemical_classification ,biology ,Perennial plant ,Thymus pulegioides ,Vegetation ,Native plant ,biology.organism_classification ,Agronomy ,chemistry ,Plant cover ,Organic matter ,Annual plant ,Mulch ,Ecology, Evolution, Behavior and Systematics - Abstract
Green roofs are known to mitigate the negative effects of urban consolidation by offering diverse ecosystem functions compared to non-vegetated roofs. However, the support for native biodiversity might be improved by using native plant species. In a mesocosm experiment, we studied the suitability of three commercial green-roof growth substrates for the establishment of 27 native plant species from dry sandy grasslands of northwestern Germany over the course of four years. The substrates were mineral-based, but differed in the layering of organic matter. Total establishment rates reached 44–59% in Year 4, indicating the general suitability of the substrates. During the first weeks after seeding, with light irrigation, the vascular plant cover was greater in the similar substrates Zincolit® Plus (Z) and Zincolit® Plus-Leicht (ZL) with their compost-based organic mulch layers than in the substrate Sedumteppich (ST) with its organic matter evenly admixed with the mineral aggregates. In Years 2 and 3, however, the vascular plant cover was greater in the ST substrate, likely due to the better availability of water and nutrients from the organic matter compared to the dry surface-mulch layer variants Z and ZL. After severe drought events, the decline in plant cover was more pronounced in the ST substrate, likely representing a trade-off between lush growth and a susceptibility to drought. An indicator-species analysis revealed differences in species composition between the ST and Z/ZL substrates. Annual plant species were indicators of the ST substrate. Perennials, such as Thymus pulegioides and Achillea millefolium, were typical of the Z and ZL substrates. In addition to the general suitability of the tested standard substrates for target species establishment, the study indicated that a combination of different layers of substrate components resulted in different vegetation patterns that may have a positive effect on green-roof biodiversity.
- Published
- 2021
- Full Text
- View/download PDF
9. A conceptual framework for urban ecological restoration and rehabilitation
- Author
-
Valentin H. Klaus and Kathrin Kiehl
- Subjects
0106 biological sciences ,Biodiversity ,010603 evolutionary biology ,01 natural sciences ,Novel ecosystem ,Ecosystem services ,Climate change mitigation ,Geography ,Conceptual framework ,Urban ecosystem ,Restoration ecology ,Recreation ,Environmental planning ,Ecology, Evolution, Behavior and Systematics ,010606 plant biology & botany - Abstract
Urban greenspace has gained considerable attention during the last decades because of its relevance to wildlife conservation, human welfare, and climate change adaptation. Biodiversity loss and ecosystem degradation worldwide require the formation of new concepts of ecological restoration and rehabilitation aimed at improving ecosystem functions, services, and biodiversity conservation in cities. Although relict sites of natural and semi-natural ecosystems can be found in urban areas, environmental conditions and species composition of most urban ecosystems are highly modified, inducing the development of novel and hybrid ecosystems. A consequence of this ecological novelty is the lack of (semi-) natural reference systems available for defining restoration targets and assessing restoration success in urban areas. This hampers the implementation of ecological restoration in cities. In consideration of these challenges, we present a new conceptual framework that provides guidance and support for urban ecological restoration and rehabilitation by formulating restoration targets for different levels of ecological novelty (i.e., historic, hybrid, and novel ecosystems). To facilitate the restoration and rehabilitation of novel urban ecosystems, we recommend using established species-rich and well-functioning urban ecosystems as reference. Such urban reference systems are likely to be present in many cities. Highlighting their value in comparison to degraded ecosystems can stimulate and guide restoration initiatives. As urban restoration approaches must consider local history and site conditions, as well as citizens’ needs, it may also be advisable to focus the restoration of strongly altered urban ecosystems on select ecosystem functions, services and/or biodiversity values. Ecosystem restoration and rehabilitation in cities can be either relatively inexpensive or costly, but even expensive measures can pay off when they effectively improve ecosystem services such as climate change mitigation or recreation. Successful re‐shaping and re-thinking of urban greenspace by involving citizens and other stakeholders will help to make our cities more sustainable in the future., Basic and Applied Ecology, 52, ISSN:1439-1791, ISSN:1618-0089
- Published
- 2021
- Full Text
- View/download PDF
10. Seed mixture strongly affects species-richness and quality of perennial flower strips on fertile soil
- Author
-
Sabine Tischew, Anita Kirmer, Kathrin Kiehl, and Annika Schmidt
- Subjects
0106 biological sciences ,Perennial plant ,Wildflower ,Species diversity ,Native plant ,Biology ,010603 evolutionary biology ,01 natural sciences ,Agronomy ,Forb ,Cultivar ,Species richness ,Arable land ,Ecology, Evolution, Behavior and Systematics ,010606 plant biology & botany - Abstract
Within the frame of the EU Common Agricultural Policy, most countries subsidise the establishment and maintenance of perennial flower strips on arable land within Agri-Environmental Schemes to provide foraging habitats and refuges for wildlife. In a replicated field experiment, we studied the effects of different types of seed mixtures on the establishment and maintenance of perennial flower strips on fertile arable land in the federal state of Saxony-Anhalt, Germany over seven years. The seed mixtures were commonly applied within recent Common Agricultural Policy funding periods: (1) a low-diversity cultivar standard seed mixture (CULTIVAR), (2) a high-diversity cultivar and native plant mixture (MIX), and (3) a high-diversity native plant mixture (WILDFLOWER). All plots were mulched every year in March and at the beginning of August. The low success of CULTIVAR triggered the massive encroachment of spontaneously established perennial grasses. In MIX, too, cultivars have disappeared after the first year. Both wildflower variants were successful in maintaining a high cover of sown perennial native forbs and a high ratio of established sown species, even after seven years. WILDFLOWER always tended to show better values than MIX. Furthermore, spontaneously establishing species began to spread their cover in MIX in the fifth year, with a very strongly increasing tendency, whereas in WILDFLOWER cover of spontaneously immigrating species stayed satisfyingly low. Using native wildflowers to establish perennial wildflower strips was very effective in maintaining high species diversity within the Agri-Environmental Schemes funding period of five years and beyond. WILDFLOWER was especially successful. On the other hand, CULTIVAR failed completely. On fertile soils in regions with rather low yearly precipitation, mulching twice a year supported the maintenance of perennial wildflower strips.
- Published
- 2020
- Full Text
- View/download PDF
11. Benchmarking plant diversity of Palaearctic grasslands and other open habitats
- Author
-
Monika Janišová, Georgios Fotiadis, Honor C. Prentice, Farshid Memariani, Ivan I. Moysiyenko, Pavel Lustyk, Zdenka Preislerová, Hristo Pedashenko, Francesco Santi, Atushi Ushimaru, Steffen Boch, Galina Savchenko, Fabrizio Buldrini, Irena Axmanová, Milan Chytrý, Jiri Dolezal, Denys Vynokurov, Marta Czarniecka-Wiera, Zdeňka Lososová, Robert K. Peet, Simon Stifter, Ricarda Pätsch, Koenraad Van Meerbeek, Alba Gutiérrez-Girón, Simona Maccherini, András Kelemen, Thomas Becker, Michal Hájek, Christian Pedersen, Stefan Widmer, Remigiusz Pielech, Vladimir Ronkin, Kai Jensen, Anna Wróbel, Cristina Chocarro, Sebastian Świerszcz, Lei Deng, Arkadiusz Nowak, Luisa Conti, Eulàlia Pladevall-Izard, Swantje Löbel, Jonathan Etzold, Jan Peters, Hans Henrik Bruun, Elisabeth M. Hüllbusch, Anna Kuzemko, Martin Magnes, Rayna Natcheva, Riccardo Guarino, Joaquín Molero Mesa, Vasco Silva, Pavel Dřevojan, Iuliia Vasheniak, Jan Lepš, Péter Török, Timo Conradi, Marcin Nobis, Aaron Pérez-Haase, Yun Wang, María Rosa Fernández Calzado, Ilaria Bonini, Massimo Terzi, Meelis Pärtel, Liqing Zhao, Csaba Tölgyesi, Frank Weiser, Philipp Kirschner, Juan Antonio Campos, Zuzana Plesková, László Demeter, George Fayvush, Asun Berastegi, Behlül Güler, Diego Liendo, Nancy Langer, Manfred Finckh, Martin Diekmann, Florian Jeltsch, Anke Jentsch, Robin J. Pakeman, Tobias Ceulemans, Javier Etayo, Orsolya Valkó, Carly J. Stevens, Kaoru Kakinuma, Michele Aleffi, Jiří Danihelka, Alicia Teresa Rosario Acosta, Balázs Teleki, Laura M. E. Sutcliffe, Solvita Rusina, Rosario G. Gavilán, Pieter De Frenne, Michele Mugnai, Arantzazu L. Luzuriaga, Marc Olivier Büchler, Lubomír Tichý, Soroor Rahmanian, Zsolt Molnár, Itziar García-Mijangos, Jürgen Dengler, Harald Pauli, Asuka Koyama, Anvar Sanaei, Cecilia Dupré, Parvaneh Ashouri, Vladimir G. Onipchenko, Ute Jandt, Zoltán Bátori, François Gillet, Alla Aleksanyan, Ariel Bergamini, Corrado Marcenò, Constantin Mardari, Nadezda Tsarevskaya, José Luis Benito Alonso, Łukasz Kozub, Ottar Michelsen, Felix May, Goffredo Filibeck, Jan Roleček, Jalil Noroozi, Karsten Wesche, Eva Šmerdová, Michael Manthey, Triin Reitalu, Ana M. Sánchez, Eszter Ruprecht, Regina Lindborg, Idoia Biurrun, Risto Virtanen, Gianpietro Giusso del Galdo, Helmut Mayrhofer, Annika K. Jägerbrand, Mansoureh Kargar, Chrisoula B. Pirini, Dariia Shyriaieva, Sabina Burrascano, Esther Baumann, Christian Dolnik, Kristina Merunková, Ching-Feng Li, Eliane S. Meier, Kuber Prasad Bhatta, Mercedes Herrera, Klaus Ecker, Mohammad Farzam, Marta Torca, Nele Ingerpuu, Philippe Jeanneret, Francesco de Bello, Alireza Naqinezhad, Tünde Farkas, Elena Belonovskaya, Josep M. Ninot, Elias Afif, Munemitsu Akasaka, Lorenzo Lazzaro, András Vojtkó, Leonardo Rosati, Jianshuang Wu, Arshad Ali, Sándor Bartha, Zuoqiang Yuan, Wenhong Ma, Patryk Czortek, Marta Carboni, Franz Essl, Hannah J. White, Carmen Van Mechelen, Brigitta Erschbamer, Marek Malicki, Vasyl Budzhak, Jutta Kapfer, Manuela Winkler, Angela Lomba, Hamid Ejtehadi, Judit Sonkoly, Ingrid Turisová, Thomas Vanneste, Laura Cancellieri, Sonja Škornik, David Zelený, Zygmunt Kącki, Alessandro Chiarucci, Salza Palpurina, Sigrid Suchrow, Kathrin Kiehl, Amir Talebi, Beata Cykowska-Marzencka, Borja Jiménez-Alfaro, Nataša Pipenbaher, Frank Yonghong Li, Wendy Fjellstad, Ivana Vitasović-Kosić, Maria Pilar Rodríguez-Rojo, Álvaro Bueno, Daniele Viciani, Juha M. Alatalo, Emelie Waldén, Sahar Ghafari, Grzegorz Swacha, Anna Mária Csergő, Lu Wen, Balázs Deák, Ioannis Tsiripidis, Luis Villar, Maria-Teresa Sebastià, Svetlana Aćić, Halime Moradi, Kiril Vassilev, Daniel García-Magro, Sebastian Wolfrum, Iva Apostolova, Marko Sabovljevic, Giovanna Potenza, Monika Staniaszek-Kik, Iwona Dembicz, Aveliina Helm, Marta Czarnocka-Cieciura, Marta Gaia Sperandii, John-Arvid Grytnes, Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249) (LCE), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Biurrun I., Pielech R., Dembicz I., Gillet F., Kozub L., Marceno C., Reitalu T., Van Meerbeek K., Guarino R., Chytry M., Pakeman R.J., Preislerova Z., Axmanova I., Burrascano S., Bartha S., Boch S., Bruun H.H., Conradi T., De Frenne P., Essl F., Filibeck G., Hajek M., Jimenez-Alfaro B., Kuzemko A., Molnar Z., Partel M., Patsch R., Prentice H.C., Rolecek J., Sutcliffe L.M.E., Terzi M., Winkler M., Wu J., Acic S., Acosta A.T.R., Afif E., Akasaka M., Alatalo J.M., Aleffi M., Aleksanyan A., Ali A., Apostolova I., Ashouri P., Batori Z., Baumann E., Becker T., Belonovskaya E., Benito Alonso J.L., Berastegi A., Bergamini A., Bhatta K.P., Bonini I., Buchler M.-O., Budzhak V., Bueno A., Buldrini F., Campos J.A., Cancellieri L., Carboni M., Ceulemans T., Chiarucci A., Chocarro C., Conti L., Csergo A.M., Cykowska-Marzencka B., Czarniecka-Wiera M., Czarnocka-Cieciura M., Czortek P., Danihelka J., de Bello F., Deak B., Demeter L., Deng L., Diekmann M., Dolezal J., Dolnik C., Drevojan P., Dupre C., Ecker K., Ejtehadi H., Erschbamer B., Etayo J., Etzold J., Farkas T., Farzam M., Fayvush G., Fernandez Calzado M.R., Finckh M., Fjellstad W., Fotiadis G., Garcia-Magro D., Garcia-Mijangos I., Gavilan R.G., Germany M., Ghafari S., Giusso del Galdo G.P., Grytnes J.-A., Guler B., Gutierrez-Giron A., Helm A., Herrera M., Hullbusch E.M., Ingerpuu N., Jagerbrand A.K., Jandt U., Janisova M., Jeanneret P., Jeltsch F., Jensen K., Jentsch A., Kacki Z., Kakinuma K., Kapfer J., Kargar M., Kelemen A., Kiehl K., Kirschner P., Koyama A., Langer N., Lazzaro L., Leps J., Li C.-F., Li F.Y., Liendo D., Lindborg R., Lobel S., Lomba A., Lososova Z., Lustyk P., Luzuriaga A.L., Ma W., Maccherini S., Magnes M., Malicki M., Manthey M., Mardari C., May F., Mayrhofer H., Meier E.S., Memariani F., Merunkova K., Michelsen O., Molero Mesa J., Moradi H., Moysiyenko I., Mugnai M., Naqinezhad A., Natcheva R., Ninot J.M., Nobis M., Noroozi J., Nowak A., Onipchenko V., Palpurina S., Pauli H., Pedashenko H., Pedersen C., Peet R.K., Perez-Haase A., Peters J., Pipenbaher N., Pirini C., Pladevall-Izard E., Pleskova Z., Potenza G., Rahmanian S., Rodriguez-Rojo M.P., Ronkin V., Rosati L., Ruprecht E., Rusina S., Sabovljevic M., Sanaei A., Sanchez A.M., Santi F., Savchenko G., Sebastia M.T., Shyriaieva D., Silva V., Skornik S., Smerdova E., Sonkoly J., Sperandii M.G., Staniaszek-Kik M., Stevens C., Stifter S., Suchrow S., Swacha G., Swierszcz S., Talebi A., Teleki B., Tichy L., Tolgyesi C., Torca M., Torok P., Tsarevskaya N., Tsiripidis I., Turisova I., Ushimaru A., Valko O., Van Mechelen C., Vanneste T., Vasheniak I., Vassilev K., Viciani D., Villar L., Virtanen R., Vitasovic-Kosic I., Vojtko A., Vynokurov D., Walden E., Wang Y., Weiser F., Wen L., Wesche K., White H., Widmer S., Wolfrum S., Wrobel A., Yuan Z., Zeleny D., Zhao L., Dengler J., Biurrun, Idoia, Pielech, Remigiusz, Dembicz, Iwona, Gillet, Françoi, Kozub, Łukasz, Marcenò, Corrado, Reitalu, Triin, Van Meerbeek, Koenraad, Guarino, Riccardo, Chytrý, Milan, Pakeman, Robin J., Preislerová, Zdenka, Axmanová, Irena, Burrascano, Sabina, Bartha, Sándor, Boch, Steffen, Bruun, Hans Henrik, Conradi, Timo, De Frenne, Pieter, Essl, Franz, Filibeck, Goffredo, Hájek, Michal, Jiménez‐Alfaro, Borja, Kuzemko, Anna, Molnár, Zsolt, Pärtel, Meeli, Pätsch, Ricarda, Prentice, Honor C., Roleček, Jan, Sutcliffe, Laura M.E., Terzi, Massimo, Winkler, Manuela, Wu, Jianshuang, Aćić, Svetlana, Acosta, Alicia T.R., Afif, Elia, Akasaka, Munemitsu, Alatalo, Juha M., Aleffi, Michele, Aleksanyan, Alla, Ali, Arshad, Apostolova, Iva, Ashouri, Parvaneh, Bátori, Zoltán, Baumann, Esther, Becker, Thoma, Belonovskaya, Elena, Benito Alonso, José Lui, Berastegi, Asun, Bergamini, Ariel, Bhatta, Kuber Prasad, Bonini, Ilaria, Büchler, Marc‐Olivier, Budzhak, Vasyl, Bueno, Álvaro, Buldrini, Fabrizio, Campos, Juan Antonio, Cancellieri, Laura, Carboni, Marta, Ceulemans, Tobia, Chiarucci, Alessandro, Chocarro, Cristina, Conti, Luisa, Csergő, Anna Mária, Cykowska‐Marzencka, Beata, Czarniecka‐Wiera, Marta, Czarnocka‐Cieciura, Marta, Czortek, Patryk, Danihelka, Jiří, de Bello, Francesco, Deák, Baláz, Demeter, László, Deng, Lei, Diekmann, Martin, Dolezal, Jiri, Dolnik, Christian, Dřevojan, Pavel, Dupré, Cecilia, Ecker, Klau, Ejtehadi, Hamid, Erschbamer, Brigitta, Etayo, Javier, Etzold, Jonathan, Farkas, Tünde, Farzam, Mohammad, Fayvush, George, Fernández Calzado, María Rosa, Finckh, Manfred, Fjellstad, Wendy, Fotiadis, Georgio, García‐Magro, Daniel, García‐Mijangos, Itziar, Gavilán, Rosario G., Germany, Marku, Ghafari, Sahar, Giusso del Galdo, Gian Pietro, Grytnes, John‐Arvid, Güler, Behlül, Gutiérrez‐Girón, Alba, Helm, Aveliina, Herrera, Mercede, Hüllbusch, Elisabeth M., Ingerpuu, Nele, Jägerbrand, Annika K., Jandt, Ute, Janišová, Monika, Jeanneret, Philippe, Jeltsch, Florian, Jensen, Kai, Jentsch, Anke, Kącki, Zygmunt, Kakinuma, Kaoru, Kapfer, Jutta, Kargar, Mansoureh, Kelemen, Andrá, Kiehl, Kathrin, Kirschner, Philipp, Koyama, Asuka, Langer, Nancy, Lazzaro, Lorenzo, Lepš, Jan, Li, Ching‐Feng, Li, Frank Yonghong, Liendo, Diego, Lindborg, Regina, Löbel, Swantje, Lomba, Angela, Lososová, Zdeňka, Lustyk, Pavel, Luzuriaga, Arantzazu L., Ma, Wenhong, Maccherini, Simona, Magnes, Martin, Malicki, Marek, Manthey, Michael, Mardari, Constantin, May, Felix, Mayrhofer, Helmut, Meier, Eliane Seraina, Memariani, Farshid, Merunková, Kristina, Michelsen, Ottar, Molero Mesa, Joaquín, Moradi, Halime, Moysiyenko, Ivan, Mugnai, Michele, Naqinezhad, Alireza, Natcheva, Rayna, Ninot, Josep M., Nobis, Marcin, Noroozi, Jalil, Nowak, Arkadiusz, Onipchenko, Vladimir, Palpurina, Salza, Pauli, Harald, Pedashenko, Hristo, Pedersen, Christian, Peet, Robert K., Pérez‐Haase, Aaron, Peters, Jan, Pipenbaher, Nataša, Pirini, Chrisoula, Pladevall‐Izard, Eulàlia, Plesková, Zuzana, Potenza, Giovanna, Rahmanian, Soroor, Rodríguez‐Rojo, Maria Pilar, Ronkin, Vladimir, Rosati, Leonardo, Ruprecht, Eszter, Rusina, Solvita, Sabovljević, Marko, Sanaei, Anvar, Sánchez, Ana M., Santi, Francesco, Savchenko, Galina, Sebastià, Maria Teresa, Shyriaieva, Dariia, Silva, Vasco, Škornik, Sonja, Šmerdová, Eva, Sonkoly, Judit, Sperandii, Marta Gaia, Staniaszek‐Kik, Monika, Stevens, Carly, Stifter, Simon, Suchrow, Sigrid, Swacha, Grzegorz, Świerszcz, Sebastian, Talebi, Amir, Teleki, Baláz, Tichý, Lubomír, Tölgyesi, Csaba, Torca, Marta, Török, Péter, Tsarevskaya, Nadezda, Tsiripidis, Ioanni, Turisova, Ingrid, Ushimaru, Atushi, Valkó, Orsolya, Van Mechelen, Carmen, Vanneste, Thoma, Vasheniak, Iuliia, Vassilev, Kiril, Viciani, Daniele, Villar, Lui, Virtanen, Risto, Vitasović‐Kosić, Ivana, Vojtkó, Andrá, Vynokurov, Deny, Waldén, Emelie, Wang, Yun, Weiser, Frank, Wen, Lu, Wesche, Karsten, White, Hannah, Widmer, Stefan, Wolfrum, Sebastian, Wróbel, Anna, Yuan, Zuoqiang, Zelený, David, Zhao, Liqing, Dengler, Jürgen, Bavarian Research Foundation, International Association for Vegetation Science, Eusko Jaurlaritza, Czech Science Foundation, Estonian Research Council, Scottish Government's Rural and Environment Science and Analytical Services, Ministero dell'Istruzione, dell'Università e della Ricerca, Agencia Estatal de Investigación (España), Science and Technology Center in Ukraine, Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, Swedish Institute, Foundation for Introducing Talent of Nanjing University of Information Science and Technology, Hebei Province, Academy of Sciences of the Czech Republic, Hungarian Academy of Sciences, Tyrolean Science Fund, Austrian Academy of Sciences, University of Innsbruck, Ministerio de Economía y Competitividad (España), Comunidad de Madrid, National Geographic Society, Slovak Academy of Sciences, Fundação para a Ciência e a Tecnologia (Portugal), National Science Centre (Poland), Russian Science Foundation, University of Latvia Foundation, Slovenian Research Agency, Biurrun, I, Pielech, R, Dembicz, I, Gillet, F, Kozub, L, Marceno, C, Reitalu, T, Van Meerbeek, K, Guarino, R, Chytry, M, Pakeman, RJ, Preislerova, Z, Axmanova, I, Burrascano, S, Bartha, S, Boch, S, Bruun, HH, Conradi, T, De Frenne, P, Essl, F, Filibeck, G, Hajek, M, Jimenez-Alfaro, B, Kuzemko, A, MOLNAR, Zsolt, Partel, M, Patsch, R, Prentice, HC, Rolecek, J, Sutcliffe, LME, Terzi, M, Winkler, M, Wu, JS, Acic, S, Acosta, ATR, Afif, E, Akasaka, M, Alatalo, JM, Aleffi, M, Aleksanyan, A, Ali, A, Apostolova, I, Ashouri, P, Batori, Z, Baumann, E, BECKER, T, Belonovskaya, E, Alonso, JLB, Berastegi, A, Bergamini, A, Bhatta, KP, Bonini, I, Buchler, MO, Budzhak, V, Bueno, A, Buldrini, F, Campos, JA, Cancellieri, L, Carboni, M, Ceulemans, T, Chiarucci, A, Chocarro, C, Conti, L, Csergo, AM, Cykowska-Marzencka, B, Czarniecka-Wiera, M, Czarnocka-Cieciura, M, Czortek, P, Danihelka, J, Bello, F, Deak, B, Demeter, L, Deng, L, Diekmann, M, Dolezal, J, Dolnik, C, Drevojan, P, Dupre, C, Ecker, K, Ejtehadi, H, Erschbamer, B, Etayo, J, Etzold, J, Farkas, T, Farzam, M, Fayvush, G, Calzado, MRF, Finckh, M, Fjellstad, W, Fotiadis, G, Garcia-Magro, D, Garcia-Mijangos, I, Gavilan, RG, Germany, M, Ghafari, S, del Galdo, GPG, Grytnes, JA, Guler, B, Gutierrez-Giron, A, Helm, A, Herrera, M, Hullbusch, EM, Ingerpuu, N, Jagerbrand, AK, Jandt, U, Janisova, M, Jeanneret, P, Jeltsch, F, Jensen, K, Jentsch, A, Kacki, Z, Kakinuma, K, Kapfer, J, Kargar, M, Kelemen, A, Kiehl, K, Kirschner, P, Koyama, A, Langer, N, Lazzaro, L, Leps, J, Li, CF, Li, FY, Liendo, D, Lindborg, R, Lobel, S, Lomba, A, Lososova, Z, Lustyk, P, Luzuriaga, AL, Ma, WH, Maccherini, S, Magnes, M, Malicki, M, Manthey, M, Mardari, C, May, F, Mayrhofer, H, Meier, ES, Memariani, F, Merunkova, K, Michelsen, O, Mesa, JM, Moradi, H, Moysiyenko, I, Mugnai, M, Naqinezhad, A, Natcheva, R, Ninot, JM, Nobis, M, Noroozi, J, Nowak, A, Onipchenko, V, Palpurina, S, Pauli, H, Pedashenko, H, Pedersen, C, Peet, RK, Perez-Haase, A, Peters, J, Pipenbaher, N, Pirini, C, Pladevall-Izard, E, Pleskova, Z, Potenza, G, Rahmanian, S, Rodriguez-Rojo, MP, Ronkin, V, Rosati, L, Ruprecht, E, Rusina, S, Sabovljevic, M, Sanaei, A, Sanchez, AM, Santi, F, Savchenko, G, Sebastia, MT, Shyriaieva, D, Silva, V, Skornik, S, Smerdova, E, Sonkoly, J, Sperandii, MG, Staniaszek-Kik, M, Stevens, C, Stifter, S, Suchrow, S, Swacha, G, Swierszcz, S, Talebi, A, Teleki, B, Tichy, L, Tolgyesi, C, Torca, M, Torok, P, Tsarevskaya, N, Tsiripidis, I, Turisova, I, Ushimaru, A, Valko, O, VAN MECHELEN, Carmen, Vanneste, T, Vasheniak, I, Vassilev, K, Viciani, D, Villar, L, Virtanen, R, Vitasovic-Kosic, I, Vojtko, A, Vynokurov, D, Walden, E, Wang, Y., Weiser, F, Wen, L, Wesche, K, White, H, Widmer, S, Wolfrum, S, Wrobel, A, Yuan, ZQ, Zeleny, D, Zhao, LQ, Dengler, J., Jiménez‐alfaro, Borja, Sutcliffe, Laura M. E., Acosta, Alicia, Büchler, Marc‐olivier, Cykowska‐marzencka, Beata, Czarniecka‐wiera, Marta, Czarnocka‐cieciura, Marta, Bello, Francesco, García‐magro, Daniel, García‐mijangos, Itziar, Grytnes, John‐arvid, Gutiérrez‐girón, Alba, Li, Ching‐feng, Pérez‐haase, Aaron, Pladevall‐izard, Eulàlia, Rodríguez‐rojo, Maria Pilar, Staniaszek‐kik, Monika, Turisová, Ingrid, and Vitasović‐kosić, Ivana
- Subjects
Vascular plant ,SURROGATE ,333.7: Landflächen, Naturerholungsgebiete ,Biome ,Lichen ,open habitat ,Plant Science ,DATABASES ,Benchmark ,Grassland ,Scale dependence ,benchmark ,RICHNESS HOTSPOTS ,Vegetation type ,Taxonomic rank ,SCALE ,Macroecology ,ComputingMilieux_MISCELLANEOUS ,2. Zero hunger ,bryophyte ,GLOBAL PATTERNS ,geography.geographical_feature_category ,Ecology ,Open habitat ,vascular plant ,Forestry ,ichen ,Vegetation ,Vegetation plot ,Palaearctic ,580: Pflanzen (Botanik) ,Geography ,Habitat ,scale dependence ,fine-grain biodiversity ,grassland ,GrassPlot Diversity Explorer ,lichen ,species–area relationship ,vegetation plot ,Life Sciences & Biomedicine ,CONSERVATION ,Environmental Sciences & Ecology ,Fine-grain biodiversity ,benchmark, bryophyte, fine-grain biodiversity, grassland, GrassPlot Diversity Explorer, lichen, open habitat, Palaearctic, scale dependence, species–area relationship, vascular plant, vegetation plot ,species-area relationship ,benchmark, bryophyte, fine-grain biodiversity, grassland, GrassPlot Diversity Explorer, lichen, open habitat, Palaearctic, scale dependence, species-area relationship, vascular plant, vegetation plot ,Species–area relationship ,Science & Technology ,Plant Sciences ,Biology and Life Sciences ,15. Life on land ,plant diversity ,13. Climate action ,Bryophyte ,SPECIES-AREA RELATIONSHIPS ,VASCULAR PLANTS ,BIODIVERSITY ,Species richness ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,BRYOPHYTES - Abstract
© 2021 The Authors., Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology., GrassPlot development has been supported by the Bavarian Research Alliance (BayIntAn_UBT_2017_58), the Eurasian Dry Grassland Group (EDGG) and the International Association for Vegetation Science (IAVS); IB, CorM, JAC, IGM, DGM, MHe, DL and MTo were supported by the Basque Government (IT936‐16); CorM, IAx, MCh, JDa, PD, MHá, ZL, ZPr, EŠ and LT were supported by the Czech Science Foundation (19‐28491X); TR was supported by the Estonian Research Council (PUT1173); RJP was funded by the Strategic Research Programme of the Scottish Government’s Rural and Environmental Science and Analytical Services Division”; SBa was supported by the GINOP‐2.3.2‐15‐2016‐00019 project; GFi was partially supported by the MIUR initiative “Department of excellence” (Law 232/2016)"; BJA was funded by the Spanish Research Agency (grant AEI/ 10.13039/501100011033); AK, VB, IM, DS, IV and DV were supported by the National Research Foundation of Ukraine (2020.01/0140); MP and AH were supported by the Estonian Research Council (PRG874, PRG609), and the European Regional Development Fund (Centre of Excellence EcolChange); Data collection of HCP was funded by FORMAS (Swedish Research Council for Environment, Agricultural Science and Spatial Planning) and The Swedish Institute; JR was supported by the Czech Science Foundation (grant No. 20‐09895S) and the long‐term developmental project of the Czech Academy of Sciences (RVO 67985939); ATRA was funded by the Grant of Excellence Departments, MIUR‐Italy (ARTICOLO 1, COMMI 314 – 337 LEGGE 232/2016); JMA was supported by Carl Tryggers stiftelse för vetenskaplig forskning and Qatar Petroleum; AAli was supported by the Jiangsu Science and Technology Special Project (Grant No. BX2019084), and Metasequoia Faculty Research Startup Funding at Nanjing Forestry University (Grant No. 163010230), and he is currently supported by Hebei University through Faculty Research Startup Funding Program; ZB was supported by the NKFI K 124796 grant; The GLORIA‐ Aragón project of JLBA was funded by the Dirección General de Cambio Climático del Gobierno de Aragón (Spain); MCs and LDem were supported by DG Environment through the European Forum on Nature Conservation and Pastoralism and Barbara Knowles Fund, in collaboration with Pogány‐havas Association, Romania; JDa was partially supported by long‐term research development project no. RVO 67985939 of the Czech Academy of Sciences; BD and OV were supported by the NKFI KH 126476, NKFI KH 130338, NKFI FK 124404 and NKFI FK 135329 grants; BD, OV and AKe were supported by the Bolyai János Scholarship of the Hungarian Academy of Sciences; BE was funded by the Environmental Department of the Tyrolean Federal State Government, the MAB Programme of the Austrian Academy of Science, the Mountain Agriculture Research Unit and the Alpine Research Centre Obergurgl of Innsbruck University. The GLORIA projects of BE were funded by the EU project no. EVK2‐CT‐2000‐00056, the Earth System Sciences Program of the Austrian Academy of Sciences (project MEDIALPS), the Amt für Naturparke, Autonome Provinz Bozen‐Südtirol, the Südtiroler Wissenschaftsfonds and the Tiroler Wissenschaftsfonds; RGG was supported by the Spanish Ministry of Research to sample GLORIA sites in central Spain (CGL 2008‐00901/BOS) and present works by the Autonomous Region of Madrid (REMEDINAL TE‐CM, S2018/EMT‐4338); MJ was supporteLatviaed by Latvia Grant No. 194051; NP and SŠ were partly supported by the Slovenian Research Agency, core fundings P1‐0403 and J7‐1822.
- Published
- 2021
- Full Text
- View/download PDF
12. Beyond the species pool: modification of species dispersal, establishment, and assembly by habitat restoration
- Author
-
Kathrin Kiehl, Aveliina Helm, Péter Török, Orsolya Valkó, and Elise Buisson
- Subjects
0106 biological sciences ,Ecology ,010604 marine biology & hydrobiology ,Seed dispersal ,Climate change ,Introduced species ,15. Life on land ,Ecological systems theory ,010603 evolutionary biology ,01 natural sciences ,Geography ,Habitat ,Sustainability ,Biological dispersal ,Restoration ecology ,Ecology, Evolution, Behavior and Systematics ,Nature and Landscape Conservation - Abstract
Species dispersal, establishment, and assembly are crucial stages of the life history of plants, and clear understanding of the governing forces and rules that shape species composition in a particular community is vital for successful ecological restoration. In this article, we focus on five aspects of seed dispersal and plant establishment, which should be considered during habitat restoration actions. In the first two sections, we discuss the success of spontaneous dispersal and establishment on restoration based on either spatial dispersal or local seed banks. In the third section, we assess the possibilities of species introduction and assisted dispersal. In the fourth section, we introduce some possibilities for the improvement of establishment success of spontaneously dispersed or introduced species. Finally, we highlight issues influencing long‐term persistence and sustainability of restored habitats, related to the alteration of management type and intensity, climate change, and spread of non‐native species. With the present article, we introduce the special issue entitled “Seed dispersal and soil seed banks – promising sources for ecological restoration” containing 15 papers by 62 authors from 10 countries arranged in the abovementioned five topics.
- Published
- 2018
- Full Text
- View/download PDF
13. Extensive roof greening with native sandy dry grassland species: Effects of different greening methods on vegetation development over four years
- Author
-
Kathrin Kiehl and Roland Schröder
- Subjects
Vascular plant ,geography ,Environmental Engineering ,geography.geographical_feature_category ,biology ,04 agricultural and veterinary sciences ,Vegetation ,010501 environmental sciences ,Management, Monitoring, Policy and Law ,Cryptogam ,biology.organism_classification ,01 natural sciences ,Moss ,Grassland ,Greening ,Agronomy ,040103 agronomy & agriculture ,Temperate climate ,0401 agriculture, forestry, and fisheries ,Environmental science ,Lichen ,0105 earth and related environmental sciences ,Nature and Landscape Conservation - Abstract
Extensive green roofs (EGRs) offer several beneficial ecosystem services for sustainable urban development. However, most standard green roofs have been designed with species-poor plant mixtures containing non-native species. Aiming to increase the nature conservation values of EGRs, we developed and tested a vascular plant seed mixture including regionally occurring native sandy dry grassland species in experimental miniature roofs in Northwestern Germany (temperate oceanic climate) over 4 years. We tested the mixture at two seed densities (1 and 2 g/m2). Additionally, we tested seeding at 1 g/m2 and introducing raked plant material collected from an ancient dry grassland. The total establishment rates of sown species reached 92–96% in the first year, but dropped to 40–60% in the last 2 years, with the highest values for the plots with raked material. Twenty-four additional species (11 vascular, 7 lichen, and 6 moss species, including 7 red-list species) typical of sandy dry grasslands were introduced through the raked material. Vascular plants reached 60–70% cover in the second year. Severe drought periods in the third and the fourth year led to a strong decline of vascular plant cover then. As this cover was higher in the plots with raked material, we assume facilitative effects through the well-developed cryptogam layer containing a mix of pleurocarpous and acrocarpous mosses and lichens. Spontaneously establishing acrocarpous mosses in sown plots did not seem to provide this same function. We conclude that EGRs designed with regionally occurring sandy dry grassland plant species and especially the application of raked plant material from ancient grassland is a fruitful approach to increase the value of green roofs for native phytodiversity.
- Published
- 2020
- Full Text
- View/download PDF
14. Temporal revegetation of a demolition site—a contribution to urban restoration?
- Author
-
Sebastian Glandorf, Kathrin Kiehl, and Roland Schröder
- Subjects
0106 biological sciences ,Urban Studies ,Geography ,Ecology ,Environmental protection ,Demolition ,010501 environmental sciences ,Revegetation ,010603 evolutionary biology ,01 natural sciences ,0105 earth and related environmental sciences - Published
- 2018
- Full Text
- View/download PDF
15. GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands
- Author
-
Jürgen, Dengler, Viktoria, Wagner, Iwona, Dembicz, Itziar, García-Mijangos, Alireza, Naqinezhad, Steffen, Boch, Alessandro, Chiarucci, Timo, Conradi, Goffredo, Filibeck, Riccardo, Guarino, Monika, Janišová, Steinbauer, Manuel J., Svetlana, Aćić, Acosta, Alicia T. R., Munemitsu, Akasaka, Marc-Andre, Allers, Iva, Apostolova, Irena, Axmanová, Branko, Bakan, Alina, Baranova, Manfred, Bardy-Durchhalter, Sándor, Bartha, Esther, Baumann, Thomas, Becker, Ute, Becker, Elena, Belonovskaya, Karin, Bengtsson, José Luis Benito Alonso, Asun, Berastegi, Ariel, Bergamini, Ilaria, Bonini, Hans Henrik Bruun, Vasyl, Budzhak, Alvaro, Bueno, Juan Antonio Campos, Laura, Cancellieri, Marta, Carboni, Cristina, Chocarro, Luisa, Conti, Marta, Czarniecka-Wiera, Pieter De Frenne, Balázs, Deák, Didukh, Yakiv P., Martin, Diekmann, Christian, Dolnik, Cecilia, Dupré, Klaus, Ecker, Nikolai, Ermakov, Brigitta, Erschbamer, Adrián, Escudero, Javier, Etayo, Zuzana, Fajmonová, Felde, Vivian A., Maria Rosa Fernández Calzado, Manfred, Finckh, Georgios, Fotiadis, Mariano, Fracchiolla, Anna, Ganeva, Daniel, García-Magro, Gavilán, Rosario G., Markus, Germany, Itamar, Giladi, François, Gillet, GIUSSO DEL GALDO, Gianpietro, González, Jose M., John-Arvid, Grytnes, Michal, Hájek, Petra, Hájková, Aveliina, Helm, Mercedes, Herrera, Eva, Hettenbergerová, Carsten, Hobohm, Hüllbusch, Elisabeth M., Nele, Ingerpuu, Ute, Jandt, Florian, Jeltsch, Kai, Jensen, Anke, Jentsch, Michael, Jeschke, Borja, Jiménez-Alfaro, Zygmunt, Kącki, Kaoru, Kakinuma, Jutta, Kapfer, Ali, Kavgacı, András, Kelemen, Kathrin, Kiehl, Asuka, Koyama, Koyanagi, Tomoyo F., Łukasz, Kozub, Anna, Kuzemko, Magni Olsen Kyrkjeeide, Sara, Landi, Nancy, Langer, Lorenzo, Lastrucci, Lorenzo, Lazzaro, Chiara, Lelli, Jan, Lepš, Swantje, Löbel, Luzuriaga, Arantzazu L., Simona, Maccherini, Martin, Magnes, Marek, Malicki, Marceno', Corrado, Constantin, Mardari, Leslie, Mauchamp, Felix, May, Ottar, Michelsen, Joaquín Molero Mesa, Zsolt, Molnár, Moysiyenko, Ivan Y., Nakaga, Yuko K., Rayna, Natcheva, Jalil, Noroozi, Pakeman, Robin J., Salza, Palpurina, Meelis, Pärtel, Ricarda, Pätsch, Harald, Pauli, Hristo, Pedashenko, Peet, Robert K., Remigiusz, Pielech, Nataša, Pipenbaher, Chrisoula, Pirini, Zuzana, Plesková, Polyakova, Mariya A., Prentice, Honor C., Jennifer, Reinecke, Triin, Reitalu, Maria Pilar Rodríguez-Rojo, Jan, Roleček, Vladimir, Ronkin, Leonardo, Rosati, Ejvind, Rosén, Eszter, Ruprecht, Solvita, Rusina, Marko, Sabovljević, Ana María Sánchez, Galina, Savchenko, Oliver, Schuhmacher, Sonja, Škornik, Marta Gaia Sperandii, Monika, Staniaszek-Kik, Zora, Stevanović-Dajić, Marin, Stock, Sigrid, Suchrow, Sutcliffe, Laura M. E., Grzegorz, Swacha, Martin, Sykes, Anna, Szabó, Amir, Talebi, Cătălin, Tănase, Massimo, Terzi, Csaba, Tölgyesi, Marta, Torca, Péter, Török, Béla, Tóthmérész, Nadezda, Tsarevskaya, Ioannis, Tsiripidis, Rossen, Tzonev, Atushi, Ushimaru, Orsolya, Valkó, Eddy van der Maarel, Thomas, Vanneste, Iuliia, Vashenyak, Kiril, Vassilev, Daniele, Viciani, Luis, Villar, Risto, Virtanen, Ivana Vitasović Kosić, Yun, Wang, Frank, Weiser, Julia, Went, Karsten, Wesche, Hannah, White, Manuela, Winkler, Zaniewski, Piotr T., Hui, Zhang, Yaron, Ziv, Sergey Znamenskiy &, Idoia Biurrun, Dengler, Jürgen, Wagner, Viktoria, Dembicz, Iwona, García-Mijangos, Itziar, Naqinezhad, Alireza, Boch, Steffen, Chiarucci, Alessandro, Conradi, Timo, Filibeck, Goffredo, Guarino, Riccardo, Janišová, Monika, Steinbauer, Manuel J., Acic, Svetlana, Acosta, Alicia T.R., Akasaka, Munemitsu, Allers, Marc-Andre, Apostolova, Iva, Axmanová, Irena, Bakan, Branko, Baranova, Alina, Bardy-Durchhalter, Manfred, Bartha, Sándor, Baumann, Esther, Becker, Thoma, Becker, Ute, Belonovskaya, Elena, Bengtsson, Karin, Alonso, José Luis Benito, Berastegi, Asun, Bergamini, Ariel, Bonini, Ilaria, Bruun, Hans Henrik, Budzhak, Vasyl, Bueno, Alvaro, Campos, Juan Antonio, Cancellieri, Laura, Carboni, Marta, Chocarro, Cristina, Conti, Luisa, Czarniecka-Wiera, Marta, De Frenne, Pieter, Deák, Baláz, Didukh, Yakiv P., Diekmann, Martin, Dolnik, Christian, Dupré, Cecilia, Ecker, Klau, Ermakov, Nikolai, Erschbamer, Brigitta, Escudero, Adrián, Etayo, Javier, Fajmonová, Zuzana, Felde, Vivian A., Calzado, Maria Rosa Fernández, Finckh, Manfred, Fotiadis, Georgio, Fracchiolla, Mariano, Ganeva, Anna, García-Magro, Daniel, Gavilán, Rosario G., Germany, Marku, Giladi, Itamar, Gillet, Françoi, del Galdo, Gian Pietro Giusso, González, Jose M., Grytnes, John-Arvid, Hájek, Michal, Hájková, Petra, Helm, Aveliina, Herrera, Mercede, Hettenbergerová, Eva, Hobohm, Carsten, Hüllbusch, Elisabeth M., Ingerpuu, Nele, Jandt, Ute, Jeltsch, Florian, Jensen, Kai, Jentsch, Anke, Jeschke, Michael, Jiménez-Alfaro, Borja, Kacki, Zygmunt, Kakinuma, Kaoru, Kapfer, Jutta, Kavgaci, Ali, Kelemen, Andrá, Kiehl, Kathrin, Koyama, Asuka, Koyanagi, Tomoyo F., Kozub, Lukasz, Kuzemko, Anna, Kyrkjeeide, Magni Olsen, Landi, Sara, Langer, Nancy, Lastrucci, Lorenzo, Lazzaro, Lorenzo, Lelli, Chiara, Lepš, Jan, Löbel, Swantje, Luzuriaga, Arantzazu L., Maccherini, Simona, Magnes, Martin, Malicki, Marek, Marcenò, Corrado, Mardari, Constantin, Mauchamp, Leslie, May, Felix, Michelsen, Ottar, Mesa, Joaquín Molero, Molnár, Zsolt, Moysiyenko, Ivan Y., Nakaga, Yuko K., Natcheva, Rayna, Noroozi, Jalil, Pakeman, Robin J., Palpurina, Salza, Pärtel, Meeli, Pätsch, Ricarda, Pauli, Harald, Pedashenko, Hristo, Peet, Robert K., Pielech, Remigiusz, Pipenbaher, Nataša, Pirini, Chrisoula, Plesková, Zuzana, Polyakova, Mariya A., Prentice, Honor C., Reinecke, Jennifer, Reitalu, Triin, Rodríguez-Rojo, Maria Pilar, Rolecek, Jan, Ronkin, Vladimir, Rosati, Leonardo, Rosén, Ejvind, Ruprecht, Eszter, Rusina, Solvita, Sabovljevic, Marko, Sánchez, Ana María, Savchenko, Galina, Schuhmacher, Oliver, Škornik, Sonja, Sperandii, Marta Gaia, Staniaszek-Kik, Monika, Stevanovic-Dajic, Zora, Stock, Marin, Suchrow, Sigrid, Sutcliffe, Laura M.E., Swacha, Grzegorz, Sykes, Martin, Szabó, Anna, Talebi, Amir, Tanase, Catalin, Terzi, Massimo, Tölgyesi, Csaba, Torca, Marta, Török, Péter, Tóthmérész, Béla, Tsarevskaya, Nadezda, Tsiripidis, Ioanni, Tzonev, Rossen, Ushimaru, Atushi, Valkó, Orsolya, van der Maarel, Eddy, Vanneste, Thoma, Vashenyak, Iuliia, Vassilev, Kiril, Viciani, Daniele, Villar, Lui, Virtanen, Risto, Kosic, Ivana Vitasovic, Wang, Yun, Weiser, Frank, Went, Julia, Wesche, Karsten, White, Hannah, Winkler, Manuela, Zaniewski, Piotr T., Zhang, Hui, Ziv, Yaron, Znamenskiy, Sergey, Biurrun, Idoia, Aćić, Svetlana, Acosta, Alicia T. R., Luis Benito Alonso, José, Henrik Bruun, Han, Antonio Campos, Juan, Rosa Fernández Calzado, Maria, Pietro Giusso del Galdo, Gian, Kącki, Zygmunt, Kavgacı, Ali, Kozub, Łukasz, Olsen Kyrkjeeide, Magni, Molero Mesa, Joaquín, Pilar Rodríguez-Rojo, Maria, Roleček, Jan, Sabovljević, Marko, María Sánchez, Ana, Sperandii, MARTA GAIA, Stevanović-Dajić, Zora, Sutcliffe, Laura M. E., Tănase, Cătălin, Vitasović Kosić, Ivana, Znamenskiy &, Sergey, Goffredo, Filibeck, and Benito Alonso, José Lui
- Subjects
0106 biological sciences ,Biodiversity ,Plant Science ,computer.software_genre ,01 natural sciences ,Grassland ,SAMPLING-DESIGN ,RICHNESS ,Ecoinformatics ,ddc:550 ,biodiversity ,European Vegetation Archive (EVA) ,Eurasian Dry Grassland Group (EDGG) ,grassland vegetation ,GrassPlot ,macroecology ,multi-taxon ,nested plot ,scale-dependence ,species-area relationship (SAR) ,sPlot ,vegetation-plot database ,Macroecology ,2. Zero hunger ,SCALE DEPENDENCE ,geography.geographical_feature_category ,Database ,Vegetation ,Geography ,Institut für Geowissenschaften ,EUROPE ,nested plot, scale-dependence ,010603 evolutionary biology ,577: Ökologie ,METAANALYSIS ,ENVIRONMENT ,Data collection ,grass- land vegetation ,DRY GRASSLANDS ,15. Life on land ,biodiversity • European Vegetation Archive (EVA) • Eurasian Dry Grassland Group (EDGG) • grassland vegetation • GrassPlot • macroecology • multi-taxon • nested plot • scale-dependence • species-area relationship (SAR) • sPlot • vegetation-plot database ,Metadata ,PATTERNS ,SPECIES-AREA RELATIONSHIPS ,Nested plot, scale-dependence ,VEGETATION ,Species richness ,computer ,010606 plant biology & botany - Abstract
GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (relevés) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001; ... 1,000 m²) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetation-plot databases, such as the European Vegetation Archive (EVA) and the global database “sPlot”. Its main aim is to facilitate studies on the scale- and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board. Abbreviations: EDGG = Eurasian Dry Grassland Group; EVA = European Vegetation Archive; GrassPlot = Database of Scale-Dependent Phytodiversity Patterns in Palaearctic Grasslands; SAR = species-area relationship.
- Published
- 2018
- Full Text
- View/download PDF
16. AMF inoculation of green roof substrate improves plant performance but reduces drought resistance of native dry grassland species
- Author
-
Milena Mohri, Kathrin Kiehl, and Roland Schröder
- Subjects
2. Zero hunger ,Biomass (ecology) ,Environmental Engineering ,Inoculation ,Soil seed bank ,fungi ,Biodiversity ,food and beverages ,Plant physiology ,Introduced species ,04 agricultural and veterinary sciences ,010501 environmental sciences ,15. Life on land ,Management, Monitoring, Policy and Law ,Native plant ,Biology ,01 natural sciences ,6. Clean water ,Plant ecology ,Agronomy ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,0105 earth and related environmental sciences ,Nature and Landscape Conservation - Abstract
Standard extensive green roofs (EGRs) with their shallow substrate layers represent extreme sites for plant growth and therefore are planted mostly with drought-resistant species, including non-native plant species. As standard EGR substrates often lack potentially mutualistic soil microorganisms, it has been stated that inoculation with arbuscular mycorrhizal fungi (AMF) might increase plant performance and drought resistance. Aiming to support native biodiversity on EGRs, we tested whether AMF inoculation into standard green roof substrate can enhance plant performance and drought resistance of regionally occurring native dry grassland species. The results of a pot experiment with 11 native plant species growing with and without AMF inoculation showed considerable differences in fitness-relevant plant traits. Over 88 days of moderate drought conditions, inoculated plants produced 2.5 times more above-ground biomass than control plants. In addition, the number of inflorescences on inoculated plants was significantly higher in 5 out of 7 flowering species. Under severe drought stress created by stopping the water supply, however, inoculated plants wilted on average 2.38 days earlier than control plants. Although the underlying mechanisms of the observed results remain unresolved, AMF inoculation might help to enhance an earlier and higher seed set, facilitating the establishment of a soil seed bank, which is necessary for a self-sustaining plant population in drought-governed habitats such as EGRs.
- Published
- 2019
- Full Text
- View/download PDF
17. Restoration Ecology in Brazil Time to Step Out of the Forest
- Author
-
Kathrin Kiehl, José Pedro Pereira Trindade, Eduardo Vélez-Martin, Valério D. Pillar, Bianca Ott Andrade, Gabriele E. Pilger, Johannes Kollmann, Gerhard E. Overbeck, Ilsi Iob Boldrini, Carlos Nabinger, Emer A. Walker, Sandra Cristina Müller, Deonir G. Zimmermann, Sebastian T. Meyer, Christiane Koch, Anita Kirmer, and Julia-Maria Hermann
- Subjects
Geography ,Ecology ,Forestry ,Restoration ecology ,Nature and Landscape Conservation ,Forest restoration - Abstract
1 Departamento de Botânica, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, RS, Brazil 2 Restoration Ecology, Center of Life and Food Sciences Weihenstephan, Technische Universitat Munchen – TUM, Freising, Germany 3 Programa de Pos-graduacao em Botânica, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, RS, Brazil 4 Faculty of Agricultural Sciences and Landscape Architecture, Hochschule Osnabruck – University of Applied Sciences, Osnabruck, Germany 5 Department of Nature Conservation and Landscape Planning, Anhalt University of Applied Sciences, Bernburg, Germany 6 Terrestrial Ecology, Center of Life and Food Sciences Weihenstephan, Technische Universitat Munchen – TUM, Freising, Germany 7 Departamento de Ecologia, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, RS, Brazil 8 Departamento de Plantas Forrageiras e Agrometeorologia, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, RS, Brazil 9 EMBRAPA Pecuaria Sul, Bage, RS, Brazil 10Programa de Pos-graduacao em Ecologia, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, RS, Brazil 11Parque Nacional Aparados da Serra, ICMBio, Cambara do Sul, RS, Brazil
- Published
- 2013
- Full Text
- View/download PDF
18. Spatial and temporal determinants of genetic structure inGentianella bohemica
- Author
-
Kathrin Kiehl, Julia Königer, Jiří Brabec, Josef Greimler, and Carolin A. Rebernig
- Subjects
Diversity index ,Genetic diversity ,Ecology ,Effective population size ,Geographical distance ,Genetic structure ,Genetic variation ,Context (language use) ,Amplified fragment length polymorphism ,Biology ,Ecology, Evolution, Behavior and Systematics ,Nature and Landscape Conservation - Abstract
The biennial plant Gentianella bohemica is a subendemic of the Bohemian Massif, where it occurs in seminatural grasslands. It has become rare in recent decades as a result of profound changes in land use. Using amplified fragment length polymorphisms (AFLP) fingerprint data, we investigated the genetic structure within and among populations of G. bohemica in Bavaria, the Czech Republic, and the Austrian border region. The aim of our study was (1) to analyze the genetic structure among populations and to discuss these findings in the context of present and historical patterns of connectivity and isolation of populations, (2) to analyze genetic structure among consecutive generations (cohorts of two consecutive years), and (3) to investigate relationships between intrapopulational diversity and effective population size (Ne) as well as plant traits. (1) The German populations were strongly isolated from each other (pairwise FST= 0.29–0.60) and from all other populations (FST= 0.24–0.49). We found a pattern of near panmixis among the latter (FST= 0.15–0.35) with geographical distance explaining only 8% of the genetic variance. These results were congruent with a principal coordinate analysis (PCoA) and analysis using STRUCTURE to identify genetically coherent groups. These findings are in line with the strong physical barrier and historical constraints, resulting in separation of the German populations from the others. (2) We found pronounced genetic differences between consecutive cohorts of the German populations (pairwise FST= 0.23 and 0.31), which can be explained by local population history (land use, disturbance). (3) Genetic diversity within populations (Shannon index, HSh) was significantly correlated with Ne (RS= 0.733) and reflected a loss of diversity due to several demographic bottlenecks. Overall, we found that the genetic structure in G. bohemica is strongly influenced by historical periods of high connectivity and isolation as well as by marked demographic fluctuations in declining populations.
- Published
- 2012
- Full Text
- View/download PDF
19. Species introduction in restoration projects – Evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe
- Author
-
Anita Kirmer, Norbert Hölzel, Kathrin Kiehl, Leonid Rasran, and Tobias W. Donath
- Subjects
Topsoil ,geography ,geography.geographical_feature_category ,Agroforestry ,Seed dispersal ,Biodiversity ,food and beverages ,Introduced species ,Vegetation ,Grassland ,Environmental science ,Species richness ,Restoration ecology ,Ecology, Evolution, Behavior and Systematics - Abstract
During recent decades, many studies have shown that the successful restoration of species-rich grasslands is often seed-limited because of depleted seed banks and limited seed dispersal in modern fragmented landscapes. In Europe, commercial seed mixtures, which are widely used for restoration measures, mostly consist of species and varieties of non-local provenance. The regional biodiversity of a given landscape, however, can be preserved only when seeds or plants of local provenance are used in restoration projects. Furthermore, the transfer of suitable target species of local provenance can strongly enhance restoration success. We review and evaluate the success of currently used near-natural methods for the introduction of target plant species (e.g. seeding of site-specific seed mixtures, transfer of fresh seed-containing hay, vacuum harvesting, transfer of turves or seed-containing soil) on restoration sites, ranging from dry and mesic meadows to floodplain grasslands and fens. Own data combined with literature findings show species establishment rates during the initial phase as well as the persistence of target species during long-term vegetation development on restoration sites. In conclusion, our review indicates that seed limitation can be overcome successfully by most of the reviewed measures for species introduction. The establishment of species-rich grasslands is most successful when seeds, seed-containing plant material or soil are spread on bare soil of ex-arable fields after tilling or topsoil removal, or on raw soils, e.g. in mined areas. In species-poor grasslands without soil disturbance and on older ex-arable fields with dense weed vegetation, final transfer rates were the lowest. For future restoration projects, suitable measures have to be chosen carefully from case to case as they differ considerably in costs and logistic effort. Long-term prospects for restored grassland are especially good when management can be incorporated in agricultural systems.
- Published
- 2010
- Full Text
- View/download PDF
20. Plant species introduction in ecological restoration: Possibilities and limitations
- Author
-
Kathrin Kiehl
- Subjects
Land restoration ,Ecology ,Plant species ,Introduced species ,Biology ,Restoration ecology ,Ecology, Evolution, Behavior and Systematics - Published
- 2010
- Full Text
- View/download PDF
21. Establishment and persistence of target species in newly created calcareous grasslands on former arable fields
- Author
-
Jörg Pfadenhauer and Kathrin Kiehl
- Subjects
Nature reserve ,Topsoil ,Ecology ,Agronomy ,Standing crop ,Biodiversity ,Ruderal species ,Plant Science ,Vegetation ,Species richness ,Biology ,Detrended correspondence analysis - Abstract
The effects of different restoration measures and management variants on the vegetation development of newly created calcareous grasslands were studied in southern Germany from 1993 to 2002. In 1993, fresh seed-containing hay from a nature reserve with ancient calcareous grasslands was transferred onto ex-arable fields with and without topsoil removal. Nine years after start of the restoration, the standing crop was lower and the cover of bare soil was higher on topsoil-removal sites than on sites without soil removal. Topsoil removal had a positive effect on the proportion of target species (class Festuco-Brometea), because the number and cover of productive meadow species (class Molinio-Arrhenatheretea) were reduced. Persistence of hay-transfer species and the number of newly colonizing target species were highest on topsoil-removal sites. On plots with and without soil removal, species richness and the number of target species increased quickly after hay transfer and were always higher on hay-transfer plots than on plots that had not received hay in 1993. In 2002, differences induced by hay transfer were still much more pronounced than differences between management regimes. Management by mowing, however, led to higher species richness, a greater number of target species and a lower number of ruderals in comparison to no management on restoration fields without soil removal. A detrended correspondence analysis (DCA) indicated that vegetation composition of the hay-transfer plots of the restoration fields still differed from the vegetation of ancient grasslands in the nature reserve. Vegetation of an ex-arable field in the nature reserve (last ploughed in 1959) showed an intermediate successional stage. In general our results indicate that the transfer of autochthonous hay is an efficient method for the restoration of species-rich vegetation, which allows not only quick establishment but also long-term persistence of target species.
- Published
- 2006
- Full Text
- View/download PDF
22. Effects of experimental and real land use on seedling recruitment of six fen species
- Author
-
Jörg Pfadenhauer, Barbara Stammel, and Kathrin Kiehl
- Subjects
Canopy ,biology ,Agronomy ,Germination ,Seedling ,Litter ,Microsite ,Succisa pratensis ,Trampling ,biology.organism_classification ,Moss ,Ecology, Evolution, Behavior and Systematics - Abstract
Summary Seedling emergence and early establishment of six fen species differing in seed mass and growth form were investigated under experimental land use with changed vegetation structure and under real land use in a calcareous fen. Seeds of all six species were sown in plots with different experimental land-use treatments: summer and autumn mowing with or without litter removal, trampling and abandonment. Additionally, emergence and survival of experimentally sown seeds was investigated under real land use on adjacent sites managed by mowing, grazing, intense trampling or abandonment. On abandoned plots and on plots without litter removal of the land-use experiment, emergence rates of all species were negatively affected either by high litter and moss cover or by tall canopy. No differences were found between autumn and summer mowing. Gap creation by experimental trampling did not increase germination rate. Under real land use, establishment of seedlings of most species was positively affected by litter cover and tall canopy. Trampling, in contrast, had a severe negative effect on seedling survival. The investigated species differed in their germination ability which was tested in the germination chamber and in their response to land use. Succisa pratensis with the highest seed mass germinated well in the chamber and in the field more or less regardless of land use. The low germination rate of Parnassia palustris in the germination chamber indicated a limitation of viable seeds. In the field, however, seedling emergence was additionally limited by microsite availability. Seeds of Serratula tinctoria and Primula farinosa germinated well in the germination chamber, but seedling recruitment in the field was hampered in the presence of a high litter or moss cover. Seeds of Tofieldia calyculata and Pinguicula vulgaris were strongly dependent on the availability of suitable microsites in the field. They hardly germinated under natural conditions, in spite of a high number of germinable seeds in the germination chamber.
- Published
- 2006
- Full Text
- View/download PDF
23. Seedling recruitment of Succisella inflexa in fen meadows: Importance of seed and microsite availability
- Author
-
Gerhard E. Overbeck, Kathrin Kiehl, and C. Abs
- Subjects
Herbivore ,geography ,geography.geographical_feature_category ,Ecology ,biology ,Fen-meadow ,Microsite ,Management, Monitoring, Policy and Law ,biology.organism_classification ,Moss ,Grassland ,Agronomy ,Seedling ,Germination ,Botany ,Litter ,Nature and Landscape Conservation - Abstract
The effects of different forms of land use on germination and establishment of the rare fen species Succisella inflexa were investigated in seed introduction experiments in a mown and an abandoned fen meadow in SE Germany. Treatments included abandonment, mowing in fall and mowing with creation of gaps in the moss and litter layer. Floating capacity of seeds was tested in order to estimate potential dispersal by water. On the mown meadow, gaps had a slightly positive effect on germination rates, while greatly increasing seedling survival until the next spring. At the abandoned site, litter inhibited germination, whereas mosses had a negative effect on germination and a positive effect on survival rates during the first year after germination. Both germination and seedling establishment were negatively affected by the presence of slug herbivores. On the abandoned site, no seedlings at all survived until the next spring. Even though seeds of Succisella inflexa were capable to float for several week...
- Published
- 2003
- Full Text
- View/download PDF
24. Alternative management on fens: Response of vegetation to grazing and mowing
- Author
-
Jörg Pfadenhauer, Kathrin Kiehl, and Barbara Stammel
- Subjects
geography ,Biomass (ecology) ,geography.geographical_feature_category ,Ecology ,Vegetation ,Plant functional type ,Biology ,Management, Monitoring, Policy and Law ,Pasture ,Agronomy ,Grazing ,Forb ,IUCN Red List ,Species richness ,Nature and Landscape Conservation - Abstract
The impact of cattle grazing on the vegetation of calcareous fens was compared to the effects of traditional autumn mowing in southern Germany. Vegetation composition was studied in adjacent pairs of fen meadows and pastures with similar environmental conditions and biomass production. Vegetation data were analysed with respect to species richness, species composition and response of species traits to disturbance, including morphology, defence mechanisms, clonal growth form and generative reproduction. Species richness was significantly reduced by grazing, but the percentage of typical fen species or Red Data Book species was not affected by land use type. Detrended Corrspondence Analysis indicated that species composition could best be explained in terms of a land use gradient. Species traits showed a clear trend in their response to land use type. Grazing favoured grasses and small forbs. Only a few species with defence mechanisms against foraging were more frequent or abundant on pastures. Man...
- Published
- 2003
- Full Text
- View/download PDF
25. Directional and non‐directional vegetation changes in a temperate salt marsh in relation to biotic and abiotic factors
- Author
-
Henning K. Schröder, Kathrin Kiehl, and Martin Stock
- Subjects
geography ,geography.geographical_feature_category ,Ecology ,biology ,Salicornia ,Artemisia maritima ,Management, Monitoring, Policy and Law ,Puccinellia maritima ,biology.organism_classification ,Grazing pressure ,Suaeda maritima ,Salt marsh ,Botany ,Puccinellia ,Festuca rubra ,Nature and Landscape Conservation - Abstract
The effects of reduction and cessation of sheep grazing on salt-marsh vegetation were studied on a formerly intensively grazed salt marsh in northern Germany. Plant species cover was recorded in 45 permanent plots from 1992 to 2000. In 1995, physical and chemical soil parameters were analysed. Results of Redundancy Analysis (RDA) indicated that salinity and the depth of anoxic conditions below the surface were the most important soil factors related to the spatial vegetation pattern. Furthermore, plant species distribu- tion was influenced by present and past grazing intensity, by soil grain size and nitrogen content. Vegetation changes over 9 yr were analysed by non-linear regression. The cover of Aster tripolium, Atriplex portulacoides, and, to a lesser extent, Artemisia maritima and Elymus athericus increased due to reduced grazing pressure, whereas the cover of Salicornia europaea decreased. After a strong increase in the first years Aster decreased 2 to 6 yr after abandonment. In the mid salt-marsh zone Puccinellia maritima was replaced by Festuca rubra. The cover of Puccinellia, Festuca, Suaeda maritima, Glaux maritima and Salicornia fluctuated strongly, probably due to differences in weather conditions and inunda- tion frequency. Species richness per 4 m 2 generally increased while vegetation evenness decreased during the study period. Only in the high salt marsh abandoned for 9 yr did the number of species decrease slightly. Thus far, cessation of grazing did not lead to large-scale dominance of single plant species.
- Published
- 2002
- Full Text
- View/download PDF
26. [Untitled]
- Author
-
Harry Olde Venterink, Torbjorn Emil Davidsson, Lars Leonardson, and Kathrin Kiehl
- Subjects
geography ,Nutrient cycle ,geography.geographical_feature_category ,Denitrification ,Chemistry ,Soil Science ,Wetland ,Plant Science ,Mineralization (soil science) ,Nutrient ,Agronomy ,Environmental chemistry ,Nitrification ,Eutrophication ,Nitrogen cycle - Abstract
As increased nutrient availability due to drainage is considered a major cause of eutrophication in wetlands rewetting of drained wetlands is recommended as a restoration measure. The effect of soil drying and rewetting on the contribution of various nutrient release or transformation processes to changed nutrient availability for plants is however weakly understood. We measured effects of soil drying and re-wetting on N mineralization, and denitrification, as well as on release of dissolved organic nitrogen (DON), phosphorus, and potassium in incubated soil cores from a wet meadow in southern Sweden. Additionally, the impact of re-wetting with sulphate-enriched water was studied. Soil drying stimulated N mineralization (3 times higher) and reduced denitrification (5 times lower) compared to continuously wet soil. In the wet cores, denitrification increased to 20 mg N m(-2) d(-1), which was much higher than denitrification measured in the field. In the field, increased inorganic-N availability for plants due to drainage seemed primarily to be caused by increased N mineralization, and less by decreased denitrification. Soil drying also stimulated the release of DON and K, but P release was not affected. Re-wetting of dried soil cores strongly stimulated denitrification (up to 160 mg N m(-2) d(-1)), but N mineralization was not significantly decreased, neither were DON or K release. In contrast, the extractable P pool increased upon soil wetting. Re-wetting with sulphate-enriched water had no effect on any of the nutrient release or transformation rates. We conclude that caution is required in re-wetting of drained wetlands, because it may unintendently cause internal eutrophication through an increased P availability for plants.
- Published
- 2002
- Full Text
- View/download PDF
27. [Untitled]
- Author
-
Gertrud Berg, Kathrin Kiehl, Peter Esselink, and Menko Groeneweg
- Subjects
geography ,geography.geographical_feature_category ,Marsh ,Ecology ,Festuca ,biology ,Plant Science ,Vegetation ,biology.organism_classification ,Grassland ,Agronomy ,Salt marsh ,Grazing ,Festuca rubra ,Transect - Abstract
Micropatterns induced by sheep grazing, were studied in three consecutive years in a Festuca rubra-dominated salt marsh in a grazing trial with five different stocking rates (0, 1.5, 3, 4.5 and 10 sheep ha-1). The micropatterns were formed by a mosaic of short and tall F. rubra stands on a scale of square decimeters. Permanent transects of 2 m × 10 m were used to study the stability of these patterns, and to analyze interactions between the vegetation, the marsh elevation and the sheep. Micropatterns occurred only in the lightly to moderately grazed paddocks (1.5–4.5 sheep ha-1) with the highest spatial diversity in the 3 sheep ha-1 transect. When grazing was excluded, micropatterns did not develop; nor did they develop in the traditionally and most intensively grazed paddock (10 sheep ha-1). Detailed observations in one year showed that crude-protein content did not differ between green leaves from the short and tall stands, whereas in vitro digestibility was slightly higher in the short stands. In the same year, tiller density and length of full-grown leaves increased substantially in both stands from May to September. At the same time, sheep preference shifted from tall to short stands, which suggests an interplay between intake rate and digestibility in the sheep selectivity. Seven years after establishment of the grazing trial, the 10 sheep ha-1 transect still showed a smooth relief typical of the starting point of the other transects. These transects developed a more hummocky topography, with the highest spatial diversity occurring on the 1.5 sheep ha-1 transect. Marsh elevations were on average up to 3 cm lower in the short than in the tall stands, which indicates that the somewhat lower-elevated patches were grazed more intensively than the higher-elevated patches. In most cases, micropatterns changed from one year to the other, probably due to weather fluctuations. The incidence of tall stands was influenced by the rainfall balance. If the incidences of both the short and the tall stands were around 50%, however, the micropatterns showed a clear correlation with the marsh elevation. The rainfall balance seemed therefore a decisive factor for a possible correspondence between micropatterns in two consecutive years. Elevation differences were so subtle that greater than average sedimentation during a winter season could change the elevation pattern. Hence both rainfall balance and winter sedimentation counteracted the stability of the micropatterns. During our three-year study period, micropatterns were only stable in one out of six possible paired comparisons. This low micropattern stability contrasts with other studies in inland environments, which shows that in more dynamic environments, abiotic processes are likely to overrule summer grazing in determining vegetation patterns.
- Published
- 1997
- Full Text
- View/download PDF
28. Effects of four different restoration treatments on the natural abundance of 15N stable isotopes in plants
- Author
-
Kathrin Kiehl, Daniela Röder, Victoria Martine Temperton, Lea L A Märtin, and Andreas Lücke
- Subjects
Biogeochemical cycle ,restoration ,legumes ,stable isotopes ,Plant Science ,plant–soil interactions ,lcsh:Plant culture ,Biology ,Topsoil removal ,Sustainability Science ,Grassland ,chemistry.chemical_compound ,Nitrate ,Symbiosis ,Abundance (ecology) ,ddc:570 ,Functional type ,Botany ,lcsh:SB1-1110 ,N dynamics ,Original Research ,Stable isotopes ,Abiotic component ,geography ,Topsoil ,geography.geographical_feature_category ,Plant-soil interactions ,Stable isotope ratio ,functional type ,Legumes ,chemistry ,Ecosystems Research ,Restoration ,topsoil removal - Abstract
δ15N signals in plant and soil material integrate over a number of biogeochemical processes related to nitrogen (N) and therefore provide information on net effects of multiple processes on N dynamics. In general little is known in many grassland restoration projects on soil-plant N dynamics in relation to the restoration treatments. In particular, δ15N signals may be a useful tool to assess whether abiotic restoration treatments have produced the desired result. In this study we used the range of abiotic and biotic conditions provided by a restoration experiment to assess to whether the restoration treatments and/or plant functional identity and legume neighborhood affected plant δ15N signals. The restoration treatments consisted of hay transfer and topsoil removal, thus representing increasing restoration effort, from no restoration measures, through biotic manipulation to major abiotic manipulation. We measured δ15N and %N in six different plant species (two non-legumes and four legumes) across the restoration treatments. We found that restoration treatments were clearly reflected in δ15N of the non-legume species, with very depleted δ15N associated with low soil N, and our results suggest this may be linked to uptake of ammonium (rather than nitrate). The two non-legume species differed considerably in their δ15N signals, which may be related to the two species forming different kinds of mycorrhizal symbioses. Plant δ15N signals could clearly separate legumes from non-legumes, but our results did not allow for an assessment of legume neighborhood effects on non-legume δ15N signals. We discuss our results in the light of what the δ15N signals may be telling us about plant-soil N dynamics and their potential value as an indicator for N dynamics in restoration.
- Published
- 2012
- Full Text
- View/download PDF
29. Database Species-Area Relationships in Palaearctic Grasslands
- Author
-
Anna Kuzemko, Kiril Vassilev, Riccardo Guarino, Kathrin Kiehl, S. Todorova, Swantje Löbel, Anna Szabó, Thomas Becker, Ioannis Tsiripidis, Robert K. Peet, Hristo Pedashenko, Jürgen Dengler, Steffen Boch, Martin Diekmann, Z. Otypková, M. Chytry, Christian Dolnik, Eszter Ruprecht, Cecilia Dupré, Michael Jeschke, Gianpietro Giusso del Galdo, Dengler, J, Todorova, S, Becker, T, Boch, S, Chytry, M, Diekmann, M, Dolnik, C, Dupré, C, Giusso del Galdo, GP, Guarino, R, Jeschke, M, Kiehl, K, Kuzemko, A, Löbel, S, Otypková, Z, Pedashenko, H, Peet, RK, Ruprecht EM, Szabó, A, Tsiripidis, I, and Vassilev, K
- Subjects
soil data ,Mediterranean climate ,Range (biology) ,Koelerio-Corynephoretea ,lichen ,computer.software_genre ,Grassland ,European Dry Grassland Group (EDGG) ,Lichen ,dry grassland ,biodiversity ,General Environmental Science ,bryophyte ,geography ,geography.geographical_feature_category ,Database ,Land use ,Sampling (statistics) ,Vegetation ,Mediterranean grassland ,Taxon ,scale dependence ,Settore BIO/03 - Botanica Ambientale E Applicata ,Festuco-Brometea ,General Earth and Planetary Sciences ,computer - Abstract
The Database Species-Area Relationships in Palaearctic Grasslands (GIVD ID EU-00-003) is an initiative of the European Dry Grassland Group (EDGG) and primarily functions as repository for all data sampled during the EDGG Research Expeditions. During these expeditions two types of highly standardised sampling of dry grassland vegetation in the Palaearctic realm are carried out: (i) nested-plot sampling on squares of 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100 m2; (ii) additional normal releves of 10-m2 plots. For all plot sizes, the terricolous vascular plants, bryophytes, and lichens are recorded that are superficially present (shoot presence). Additionally, for all 10-m2 plots species cover is estimated directly in percent and a wide range of topographic, soil, and land use parameters is determined. Five such expeditions have been carried out so far (2009: Transylvania, Romania; 2010: Central Podolia, Ukraine; 2011: NW Bulgaria; 2012a: Sicily, Italy; 2012b: N Greece). Additionally, the database contains similar nested-plot data from published and unpublished sources covering dry grasslands in Czech Republic, Estonia, Germany, the Netherlands, Russia, Sweden, Switzerland, and the United Kingdom. The vegetation classes Festuco-Brometea and Koelerio-Corynephoretea prevail, but there are also some data from Mediterranean grasslands. Presently, the database contains data from 402 nested-plot series plus 325 separate 10m2 plots. Data from future EDGG Expeditions will be added and we are open to add other nested-plot data from any type of grassland in the Palaearctic. This huge collection of nested-plot data is very valuable for the study of species-area relationships (SARs) in grasslands and how their function types and parameters (e.g. the z-values of the power-law SARs) depend on grassland type, region, and taxon considered. The 10-m2 plots from the EDGG Expeditions (from inside and outside the nested plots) are an important contribution to consistent large-scale classifications as they were sampled by using a uniform plot size, recording also non-vascular plants, and consistently determining a set of plot-based plot-based environmental variables. The dataset will be available to the scientific public based on individual arrangements.
- Published
- 2012
30. Spatial and temporal determinants of genetic structure in Gentianella bohemica
- Author
-
Julia, Königer, Carolin A, Rebernig, Jiří, Brabec, Kathrin, Kiehl, and Josef, Greimler
- Subjects
bottleneck ,AFLP ,biennial ,historical distribution ,genetic diversity ,habitat fragmentation ,isolation ,effective population size ,spatial patterns ,Original Research - Abstract
The biennial plant Gentianella bohemica is a subendemic of the Bohemian Massif, where it occurs in seminatural grasslands. It has become rare in recent decades as a result of profound changes in land use. Using amplified fragment length polymorphisms (AFLP) fingerprint data, we investigated the genetic structure within and among populations of G. bohemica in Bavaria, the Czech Republic, and the Austrian border region. The aim of our study was (1) to analyze the genetic structure among populations and to discuss these findings in the context of present and historical patterns of connectivity and isolation of populations, (2) to analyze genetic structure among consecutive generations (cohorts of two consecutive years), and (3) to investigate relationships between intrapopulational diversity and effective population size (N(e)) as well as plant traits. (1) The German populations were strongly isolated from each other (pairwise F(ST)= 0.29-0.60) and from all other populations (F(ST)= 0.24-0.49). We found a pattern of near panmixis among the latter (F(ST)= 0.15-0.35) with geographical distance explaining only 8% of the genetic variance. These results were congruent with a principal coordinate analysis (PCoA) and analysis using STRUCTURE to identify genetically coherent groups. These findings are in line with the strong physical barrier and historical constraints, resulting in separation of the German populations from the others. (2) We found pronounced genetic differences between consecutive cohorts of the German populations (pairwise F(ST)= 0.23 and 0.31), which can be explained by local population history (land use, disturbance). (3) Genetic diversity within populations (Shannon index, H(Sh)) was significantly correlated with N(e) (R(S)= 0.733) and reflected a loss of diversity due to several demographic bottlenecks. Overall, we found that the genetic structure in G. bohemica is strongly influenced by historical periods of high connectivity and isolation as well as by marked demographic fluctuations in declining populations.
- Published
- 2011
31. Nutrient limitation and plant species composition in temperate salt marshes
- Author
-
Kathrin Kiehl, Peter Esselink, Jan Bakker, and Bakker group
- Subjects
nutrient limitation ,geography ,geography.geographical_feature_category ,biology ,food and beverages ,Suaeda ,Puccinellia maritima ,biology.organism_classification ,salt marsh ,Suaeda maritima ,Agronomy ,Low marsh ,Salt marsh ,GROWTH ,Puccinellia ,VEGETATION ,rainfall deficit ,Festuca rubra ,COMMUNITIES ,High marsh ,plant-species interactions ,Ecology, Evolution, Behavior and Systematics ,primary production - Abstract
Addition of inorganic nitrogen, phosphorus and potassium in a factorial design in two ungrazed Wadden-Sea salt marshes at low and high elevations showed that nitrogen was the limiting nutrient. No effects of nutrient addition were detected in the Ist year, probably due to a considerable rainfall deficit during the growing season. In the 2nd year, which was more humid, only nitrogen addition caused significant effects in both the low salt marsh dominated by Puccinellia maritima and the high marsh dominated by Festuca rubra. No two-way or three-way interactions with phosphorus or potassium were found. In the low marsh, nitrogen addition had a negative effect on the biomass of Puccinellia, but a positive effect on the biomass of Suaeda maritima and on the total above-ground biomass. Puccinellia was replaced by Suaeda after nitrogen addition, due to shading. In the high salt marsh, no significant effects of fertilizer application on total above-ground biomass were found, due to the weak response of the dominant species Festuca rubra, which accounted for 95% of total biomass. The biomass of Spergularia maritima increased, however, as a response to nitrogen addition. The shoot length of Festuca was positively affected by nitrogen fertilization. It is suggested that stands of Festuca reached maximal biomass at the study site without fertilization and that its growth was probably limited by self-shading.
- Published
- 1997
- Full Text
- View/download PDF
32. Restoration ecology in Brazil - time to step out of the forest
- Author
-
OVERBECK, G. E., HERMANN, J.-M., ANDRADE, B. O., BOLDRINI, I. I., KIEHL, K., KIRMER, A., KOCH, C., KOLLMANN, J., MEYER, S. T., MÜLLER, S. C., NABINGER, C., PILGER, G. E., TRINDADE, J. P. P., VÉLEZ-MARTIN, E., WALKER, E. A., ZIMMERMANN, D. G., PILLAR, V. D., Gerhard E. Overbeck, UFRGS, Julia-Maria Hermann, Technische Universität München, Bianca O. Andrade, POSGRADUANDA UFRGS, Ilsi I. Boldrini, UFRGS, Kathrin Kiehl, University of Applied Sciences, Anita Kirmer, Anhalt University of Applied Sciences, Christiane Koch, Technische Universität München, Johannes Kollmann, Technische Universität München, Sebastian T. Meyer, Technische Universität München, Sandra C. Müller, UFRGS, Carlos Nabinger, UFRGS, Gabriele E. Pilger, Technische Universität München, JOSE PEDRO PEREIRA TRINDADE, CPPSUL, Eduardo Vélez-Martin, POSGRADUANDO UFRGS, Emer A. Walker, Technische Universität München, Deonir G. Zimmermann, ICMBIO, and Valério D. Pillar, UFRGS.
- Subjects
Ecologia - Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.