209 results on '"Kurts, C"'
Search Results
2. Potentially improved response of COVID-19 vaccinated nasopharyngeal cancer patients to combination therapy with anti-PD-1 blockade and chemotherapy
- Author
-
Hua, Y.J., primary, Liu, Y.L., additional, Wen, K., additional, Kurts, C., additional, Wu, H., additional, Mei, Q., additional, and Li, J., additional
- Published
- 2023
- Full Text
- View/download PDF
3. Perforin inhibition protects from lethal endothelial damage during fulminant viral hepatitis
- Author
-
Welz, M., Eickhoff, S., Abdullah, Z., Trebicka, J., Gartlan, K. H., Spicer, J. A., Demetris, A. J., Akhlaghi, H., Anton, M., Manske, K., Zehn, D., Nieswandt, B., Kurts, C., Trapani, J. A., Knolle, P., Wohlleber, D., and Kastenmüller, W.
- Published
- 2018
- Full Text
- View/download PDF
4. Immune tolerance against infused FVIII in hemophilia A is mediated by PD-L1+ Tregs
- Author
-
Becker-Gotot, J, Meissner, M, Kotov, V, Jurado-Mestre, B, Maione, A, Pannek, A, Albert, T, Flores, C, Schildberg, FA, Gleeson, PA, Reipert, BM, Oldenburg, J, Kurts, C, Becker-Gotot, J, Meissner, M, Kotov, V, Jurado-Mestre, B, Maione, A, Pannek, A, Albert, T, Flores, C, Schildberg, FA, Gleeson, PA, Reipert, BM, Oldenburg, J, and Kurts, C
- Abstract
A major complication of hemophilia A therapy is the development of alloantibodies (inhibitors) that neutralize intravenously administered coagulation factor VIII (FVIII). Immune tolerance induction therapy (ITI) by repetitive FVIII injection can eradicate inhibitors, and thereby reduce morbidity and treatment costs. However, ITI success is difficult to predict and the underlying immunological mechanisms are unknown. Here, we demonstrated that immune tolerance against FVIII under nonhemophilic conditions was maintained by programmed death (PD) ligand 1-expressing (PD-L1-expressing) regulatory T cells (Tregs) that ligated PD-1 on FVIII-specific B cells, causing them to undergo apoptosis. FVIII-deficient mice injected with FVIII lacked such Tregs and developed inhibitors. Using an ITI mouse model, we found that repetitive FVIII injection induced FVIII-specific PD-L1+ Tregs and reengaged removal of inhibitor-forming B cells. We also demonstrated the existence of FVIII-specific Tregs in humans and showed that such Tregs upregulated PD-L1 in patients with hemophilia after successful ITI. Simultaneously, FVIII-specific B cells upregulated PD-1 and became killable by Tregs. In summary, we showed that PD-1-mediated B cell tolerance against FVIII operated in healthy individuals and in patients with hemophilia A without inhibitors, and that ITI reengaged this mechanism. These findings may impact monitoring of ITI success and treatment of patients with hemophilia A.
- Published
- 2022
5. Monocyte-derived macrophages aggravate pulmonary vasculitis via cGAS/STING/IFN-mediated nucleic acid sensing (vol 219, e0220759, 2022)
- Author
-
Kessler, N, Viehmann, SF, Krollmann, C, Mai, K, Kirschner, KM, Luksch, H, Kotagiri, P, Boehner, AMC, Huugen, D, de Oliveira Mann, CC, Otten, S, Weiss, SAI, Zillinger, T, Dobrikova, K, Jenne, DE, Behrendt, R, Ablasser, A, Bartok, E, Hartmann, G, Hopfner, K-P, Lyons, PA, Boor, P, Roesen-Wolff, A, Teichmann, LL, Heeringa, P, Kurts, C, Garbi, N, Kessler, N, Viehmann, SF, Krollmann, C, Mai, K, Kirschner, KM, Luksch, H, Kotagiri, P, Boehner, AMC, Huugen, D, de Oliveira Mann, CC, Otten, S, Weiss, SAI, Zillinger, T, Dobrikova, K, Jenne, DE, Behrendt, R, Ablasser, A, Bartok, E, Hartmann, G, Hopfner, K-P, Lyons, PA, Boor, P, Roesen-Wolff, A, Teichmann, LL, Heeringa, P, Kurts, C, and Garbi, N
- Published
- 2022
6. Sodium and its manifold impact on our immune system
- Author
-
Jobin, K., Müller, D.N., Jantsch, J., and Kurts, C.
- Subjects
endocrine system ,animal structures ,Cardiovascular and Metabolic Diseases - Abstract
The Western diet is rich in salt, and a high salt diet (HSD) is suspected to be a risk factor for cardiovascular diseases. It is now widely accepted that an experimental HSD can stimulate components of the immune system, potentially exacerbating certain autoimmune diseases, or alternatively, improving defenses against certain infections, such as cutaneous leishmaniasis. However, recent findings show that an experimental HSD may also aggravate other infections (e.g., pyelonephritis or systemic listeriosis). Here, we discuss the modulatory effects of a HSD on the microbiota, metabolic signaling, hormonal responses, local sodium concentrations, and their effects on various immune cell types in different tissues. We describe how these factors are integrated, resulting either in immune stimulation or suppression in various tissues and disease settings.
- Published
- 2021
7. Pathogen-induced tissue-resident memory TH17 (TRM17) cells amplify autoimmune kidney disease.
- Author
-
Huber T.B., Franzenburg S., Koch-Nolte F., Turner J.-E., Riedel J.-H., Huber S., Gagliani N., Wiech T., Rohde H., Bono M.R., Bonn S., Panzer U., Mittrucker H.-W., Krebs C.F., Reimers D., Zhao Y., Paust H.-J., Bartsch P., Nunez S., Rosemblatt M.V., Hellmig M., Kilian C., Borchers A., Enk L.U.B., Zinke M., Becker M., Schmid J., Klinge S., Wong M.N., Puelles V.G., Schmidt C., Bertram T., Stumpf N., Hoxha E., Meyer-Schwesinger C., Lindenmeyer M.T., Cohen C.D., Rink M., Kurts C., Huber T.B., Franzenburg S., Koch-Nolte F., Turner J.-E., Riedel J.-H., Huber S., Gagliani N., Wiech T., Rohde H., Bono M.R., Bonn S., Panzer U., Mittrucker H.-W., Krebs C.F., Reimers D., Zhao Y., Paust H.-J., Bartsch P., Nunez S., Rosemblatt M.V., Hellmig M., Kilian C., Borchers A., Enk L.U.B., Zinke M., Becker M., Schmid J., Klinge S., Wong M.N., Puelles V.G., Schmidt C., Bertram T., Stumpf N., Hoxha E., Meyer-Schwesinger C., Lindenmeyer M.T., Cohen C.D., Rink M., and Kurts C.
- Abstract
Although it is well established that microbial infections predispose to autoimmune diseases, the underlying mechanisms remain poorly understood. After infection, tissue-resident memory T (TRM) cells persist in peripheral organs and provide immune protection against reinfection. However, whether TRM cells participate in responses unrelated to the primary infection, such as autoimmune inflammation, is unknown. By using high-dimensional single-cell analysis, we identified CD4+ TRM cells with a TH17 signature (termed TRM17 cells) in kidneys of patients with ANCA-associated glomerulonephritis. Experimental models demonstrated that renal TRM17 cells were induced by pathogens infecting the kidney, such as Staphylococcus aureus, Candida albicans, and uropathogenic Escherichia coli, and persisted after the clearance of infections. Upon induction of experimental glomerulonephritis, these kidney TRM17 cells rapidly responded to local proinflammatory cytokines by producing IL-17A and thereby exacerbate renal pathology. Thus, our data show that pathogen-induced TRM17 cells have a previously unrecognized function in aggravating autoimmune disease.Copyright © 2020 American Association for the Advancement of Science. All rights reserved.
- Published
- 2020
8. Cross-presenting dendritic cells induce T cell tolerance towards filterable antigens in the kidney draining lymph node via PD-ligands: W26.003
- Author
-
Gottschalk, C., Ludwig-Portugall, I., Damuzzo, V., and Kurts, C.
- Published
- 2012
9. Direct PD-1-mediated suppression of autoreactive B cells by regulatory T cells: W18.001
- Author
-
Ludwig-Portugall, I., Gotot, J., Leopold, S., Knolle, P., Yagita, H., and Kurts, C.
- Published
- 2012
10. Dendritic cells: Not just another cell type in the kidney, but a complex immune sentinel network
- Author
-
Kurts, C
- Published
- 2006
11. Novel 3D analysis using optical tissue clearing documents the evolution of murine rapidly progressive glomerulonephritis.
- Author
-
Moeller M.J., Floege J., Kramann R., Kurts C., Bertram J.F., Spehr M., Nikolic-Paterson D.J., Puelles V.G., Fleck D., Ortz L., Papadouri S., Strieder T., Bohner A.M.C., van der Wolde J.W., Vogt M., Saritas T., Kuppe C., Fuss A., Menzel S., Klinkhammer B.M., Muller-Newen G., Heymann F., Decker L., Braun F., Kretz O., Huber T.B., Susaki E.A., Ueda H.R., Boor P., Moeller M.J., Floege J., Kramann R., Kurts C., Bertram J.F., Spehr M., Nikolic-Paterson D.J., Puelles V.G., Fleck D., Ortz L., Papadouri S., Strieder T., Bohner A.M.C., van der Wolde J.W., Vogt M., Saritas T., Kuppe C., Fuss A., Menzel S., Klinkhammer B.M., Muller-Newen G., Heymann F., Decker L., Braun F., Kretz O., Huber T.B., Susaki E.A., Ueda H.R., and Boor P.
- Abstract
Recent developments in optical tissue clearing have been difficult to apply for the morphometric analysis of organs with high cellular content and small functional structures, such as the kidney. Here, we establish combinations of genetic and immuno-labelling for single cell identification, tissue clearing and subsequent de-clarification for histoimmunopathology and transmission electron microscopy. Using advanced light microscopy and computational analyses, we investigated a murine model of crescentic nephritis, an inflammatory kidney disease typified by immune-mediated damage to glomeruli leading to the formation of hypercellular lesions and the rapid loss of kidney function induced by nephrotoxic serum. Results show a graded susceptibility of the glomeruli, significant podocyte loss and capillary injury. These effects are associated with activation of parietal epithelial cells and formation of glomerular lesions that may evolve and obstruct the kidney tubule, thereby explaining the loss of kidney function. Thus, our work provides new high-throughput endpoints for the analysis of complex tissues with single-cell resolution.Copyright © 2019 International Society of Nephrology
- Published
- 2019
12. Chronically stimulated human MAIT cells are unexpectedly potent IL-13 producers
- Author
-
Kelly, J, Minoda, Y, Meredith, T, Cameron, G, Philipp, M-S, Pellicci, DG, Corbett, AJ, Kurts, C, Gray, DHD, Godfrey, D, Kannourakis, G, Berzins, SP, Kelly, J, Minoda, Y, Meredith, T, Cameron, G, Philipp, M-S, Pellicci, DG, Corbett, AJ, Kurts, C, Gray, DHD, Godfrey, D, Kannourakis, G, and Berzins, SP
- Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize antigens derived from riboflavin biosynthesis. In addition to anti-microbial functions, human MAIT cells are associated with cancers, autoimmunity, allergies and inflammatory disorders, although their role is poorly understood. Activated MAIT cells are well known for their rapid release of Th1 and Th17 cytokines, but we have discovered that chronic stimulation can also lead to potent interleukin (IL)-13 expression. We used RNA-seq and qRT-PCR to demonstrate high expression of the IL-13 gene in chronically stimulated MAIT cells, and directly identify IL-13 using intracellular flow cytometry and multiplex bead analysis of MAIT cell cultures. This unexpected finding has important implications for IL-13-dependent diseases, such as colorectal cancer (CRC), that occur in mucosal areas where MAIT cells are abundant. We identify MAIT cells near CRC tumors and show that these areas and precancerous polyps express high levels of the IL-13 receptor, which promotes tumor progression and metastasis. Our data suggest that MAIT cells have a more complicated role in CRC than currently realized and that they represent a promising new target for immunotherapies where IL-13 can be a critical factor.
- Published
- 2019
13. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
- Author
-
Cossarizza, A, Chang, H-D, Radbruch, A, Acs, A, Adam, D, Adam-Klages, S, Agace, WW, Aghaeepour, N, Akdis, M, Allez, M, Almeida, LN, Alvisi, G, Anderson, G, Andrae, I, Annunziato, F, Anselmo, A, Bacher, P, Baldari, CT, Bari, S, Barnaba, V, Barros-Martins, J, Battistini, L, Bauer, W, Baumgart, S, Baumgarth, N, Baumjohann, D, Baying, B, Bebawy, M, Becher, B, Beisker, W, Benes, V, Beyaert, R, Blanco, A, Boardman, DA, Bogdan, C, Borger, JG, Borsellino, G, Boulais, PE, Bradford, JA, Brenner, D, Brinkman, RR, Brooks, AES, Busch, DH, Buescher, M, Bushnell, TP, Calzetti, F, Cameron, G, Cammarata, I, Cao, X, Cardell, SL, Casola, S, Cassatella, MA, Cavani, A, Celada, A, Chatenoud, L, Chattopadhyay, PK, Chow, S, Christakou, E, Cicin-Sain, L, Clerici, M, Colombo, FS, Cook, L, Cooke, A, Cooper, AM, Corbett, AJ, Cosma, A, Cosmi, L, Coulie, PG, Cumano, A, Cvetkovic, L, Dang, VD, Dang-Heine, C, Davey, MS, Davies, D, De Biasi, S, Del Zotto, G, Dela Cruz, GV, Delacher, M, Della Bella, S, Dellabona, P, Deniz, G, Dessing, M, Di Santo, JP, Diefenbach, A, Dieli, F, Dolf, A, Doerner, T, Dress, RJ, Dudziak, D, Dustin, M, Dutertre, C-A, Ebner, F, Eckle, SBG, Edinger, M, Eede, P, Ehrhardt, GRA, Eich, M, Engel, P, Engelhardt, B, Erdei, A, Esser, C, Everts, B, Evrard, M, Falk, CS, Fehniger, TA, Felipo-Benavent, M, Ferry, H, Feuerer, M, Filby, A, Filkor, K, Fillatreau, S, Follo, M, Foerster, I, Foster, J, Foulds, GA, Frehse, B, Frenette, PS, Frischbutter, S, Fritzsche, W, Galbraith, DW, Gangaev, A, Garbi, N, Gaudilliere, B, Gazzinelli, RT, Geginat, J, Gerner, W, Gherardin, NA, Ghoreschi, K, Gibellini, L, Ginhoux, F, Goda, K, Godfrey, DI, Goettlinger, C, Gonzalez-Navajas, JM, Goodyear, CS, Gori, A, Grogan, JL, Grummitt, D, Gruetzkau, A, Haftmann, C, Hahn, J, Hammad, H, Haemmerling, G, Hansmann, L, Hansson, G, Harpur, CM, Hartmann, S, Hauser, A, Hauser, AE, Haviland, DL, Hedley, D, Hernandez, DC, Herrera, G, Herrmann, M, Hess, C, Hoefer, T, Hoffmann, P, Hogquist, K, Holland, T, Hollt, T, Holmdahl, R, Hombrink, P, Houston, JP, Hoyer, BF, Huang, B, Huang, F-P, Huber, JE, Huehn, J, Hundemer, M, Hunter, CA, Hwang, WYK, Iannone, A, Ingelfinger, F, Ivison, SM, Jaeck, H-M, Jani, PK, Javega, B, Jonjic, S, Kaiser, T, Kalina, T, Kamradt, T, Kaufmann, SHE, Keller, B, Ketelaars, SLC, Khalilnezhad, A, Khan, S, Kisielow, J, Klenerman, P, Knopf, J, Koay, H-F, Kobow, K, Kolls, JK, Kong, WT, Kopf, M, Korn, T, Kriegsmann, K, Kristyanto, H, Kroneis, T, Krueger, A, Kuehne, J, Kukat, C, Kunkel, D, Kunze-Schumacher, H, Kurosaki, T, Kurts, C, Kvistborg, P, Kwok, I, Landry, J, Lantz, O, Lanuti, P, LaRosa, F, Lehuen, A, LeibundGut-Landmann, S, Leipold, MD, Leung, LYT, Levings, MK, Lino, AC, Liotta, F, Litwin, V, Liu, Y, Ljunggren, H-G, Lohoff, M, Lombardi, G, Lopez, L, Lopez-Botet, M, Lovett-Racke, AE, Lubberts, E, Luche, H, Ludewig, B, Lugli, E, Lunemann, S, Maecker, HT, Maggi, L, Maguire, O, Mair, F, Mair, KH, Mantovani, A, Manz, RA, Marshall, AJ, Martinez-Romero, A, Martrus, G, Marventano, I, Maslinski, W, Matarese, G, Mattioli, AV, Maueroder, C, Mazzoni, A, McCluskey, J, McGrath, M, McGuire, HM, McInnes, IB, Mei, HE, Melchers, F, Melzer, S, Mielenz, D, Miller, SD, Mills, KHG, Minderman, H, Mjosberg, J, Moore, J, Moran, B, Moretta, L, Mosmann, TR, Mueller, S, Multhoff, G, Munoz, LE, Munz, C, Nakayama, T, Nasi, M, Neumann, K, Ng, LG, Niedobitek, A, Nourshargh, S, Nunez, G, O'Connor, J-E, Ochel, A, Oja, A, Ordonez, D, Orfao, A, Orlowski-Oliver, E, Ouyang, W, Oxenius, A, Palankar, R, Panse, I, Pattanapanyasat, K, Paulsen, M, Pavlinic, D, Penter, L, Peterson, P, Peth, C, Petriz, J, Piancone, F, Pickl, WF, Piconese, S, Pinti, M, Pockley, AG, Podolska, MJ, Poon, Z, Pracht, K, Prinz, I, Pucillo, CEM, Quataert, SA, Quatrini, L, Quinn, KM, Radbruch, H, Radstake, TRDJ, Rahmig, S, Rahn, H-P, Rajwa, B, Ravichandran, G, Raz, Y, Rebhahn, JA, Recktenwald, D, Reimer, D, Reis e Sousa, C, Remmerswaal, EBM, Richter, L, Rico, LG, Riddell, A, Rieger, AM, Robinson, JP, Romagnani, C, Rubartelli, A, Ruland, J, Saalmueller, A, Saeys, Y, Saito, T, Sakaguchi, S, Sala-de-Oyanguren, F, Samstag, Y, Sanderson, S, Sandrock, I, Santoni, A, Sanz, RB, Saresella, M, Sautes-Fridman, C, Sawitzki, B, Schadt, L, Scheffold, A, Scherer, HU, Schiemann, M, Schildberg, FA, Schimisky, E, Schlitzer, A, Schlosser, J, Schmid, S, Schmitt, S, Schober, K, Schraivogel, D, Schuh, W, Schueler, T, Schulte, R, Schulz, AR, Schulz, SR, Scotta, C, Scott-Algara, D, Sester, DP, Shankey, TV, Silva-Santos, B, Simon, AK, Sitnik, KM, Sozzani, S, Speiser, DE, Spidlen, J, Stahlberg, A, Stall, AM, Stanley, N, Stark, R, Stehle, C, Steinmetz, T, Stockinger, H, Takahama, Y, Takeda, K, Tan, L, Tarnok, A, Tiegs, G, Toldi, G, Tornack, J, Traggiai, E, Trebak, M, Tree, TIM, Trotter, J, Trowsdale, J, Tsoumakidou, M, Ulrich, H, Urbanczyk, S, van de Veen, W, van den Broek, M, van der Pol, E, Van Gassen, S, Van Isterdael, G, van Lier, RAW, Veldhoen, M, Vento-Asturias, S, Vieira, P, Voehringer, D, Volk, H-D, von Borstel, A, von Volkmann, K, Waisman, A, Walker, RV, Wallace, PK, Wang, SA, Wang, XM, Ward, MD, Ward-Hartstonge, KA, Warnatz, K, Warnes, G, Warth, S, Waskow, C, Watson, JV, Watzl, C, Wegener, L, Weisenburger, T, Wiedemann, A, Wienands, J, Wilharm, A, Wilkinson, RJ, Willimsky, G, Wing, JB, Winkelmann, R, Winkler, TH, Wirz, OF, Wong, A, Wurst, P, Yang, JHM, Yang, J, Yazdanbakhsh, M, Yu, L, Yue, A, Zhang, H, Zhao, Y, Ziegler, SM, Zielinski, C, Zimmermann, J, Zychlinsky, A, Cossarizza, A, Chang, H-D, Radbruch, A, Acs, A, Adam, D, Adam-Klages, S, Agace, WW, Aghaeepour, N, Akdis, M, Allez, M, Almeida, LN, Alvisi, G, Anderson, G, Andrae, I, Annunziato, F, Anselmo, A, Bacher, P, Baldari, CT, Bari, S, Barnaba, V, Barros-Martins, J, Battistini, L, Bauer, W, Baumgart, S, Baumgarth, N, Baumjohann, D, Baying, B, Bebawy, M, Becher, B, Beisker, W, Benes, V, Beyaert, R, Blanco, A, Boardman, DA, Bogdan, C, Borger, JG, Borsellino, G, Boulais, PE, Bradford, JA, Brenner, D, Brinkman, RR, Brooks, AES, Busch, DH, Buescher, M, Bushnell, TP, Calzetti, F, Cameron, G, Cammarata, I, Cao, X, Cardell, SL, Casola, S, Cassatella, MA, Cavani, A, Celada, A, Chatenoud, L, Chattopadhyay, PK, Chow, S, Christakou, E, Cicin-Sain, L, Clerici, M, Colombo, FS, Cook, L, Cooke, A, Cooper, AM, Corbett, AJ, Cosma, A, Cosmi, L, Coulie, PG, Cumano, A, Cvetkovic, L, Dang, VD, Dang-Heine, C, Davey, MS, Davies, D, De Biasi, S, Del Zotto, G, Dela Cruz, GV, Delacher, M, Della Bella, S, Dellabona, P, Deniz, G, Dessing, M, Di Santo, JP, Diefenbach, A, Dieli, F, Dolf, A, Doerner, T, Dress, RJ, Dudziak, D, Dustin, M, Dutertre, C-A, Ebner, F, Eckle, SBG, Edinger, M, Eede, P, Ehrhardt, GRA, Eich, M, Engel, P, Engelhardt, B, Erdei, A, Esser, C, Everts, B, Evrard, M, Falk, CS, Fehniger, TA, Felipo-Benavent, M, Ferry, H, Feuerer, M, Filby, A, Filkor, K, Fillatreau, S, Follo, M, Foerster, I, Foster, J, Foulds, GA, Frehse, B, Frenette, PS, Frischbutter, S, Fritzsche, W, Galbraith, DW, Gangaev, A, Garbi, N, Gaudilliere, B, Gazzinelli, RT, Geginat, J, Gerner, W, Gherardin, NA, Ghoreschi, K, Gibellini, L, Ginhoux, F, Goda, K, Godfrey, DI, Goettlinger, C, Gonzalez-Navajas, JM, Goodyear, CS, Gori, A, Grogan, JL, Grummitt, D, Gruetzkau, A, Haftmann, C, Hahn, J, Hammad, H, Haemmerling, G, Hansmann, L, Hansson, G, Harpur, CM, Hartmann, S, Hauser, A, Hauser, AE, Haviland, DL, Hedley, D, Hernandez, DC, Herrera, G, Herrmann, M, Hess, C, Hoefer, T, Hoffmann, P, Hogquist, K, Holland, T, Hollt, T, Holmdahl, R, Hombrink, P, Houston, JP, Hoyer, BF, Huang, B, Huang, F-P, Huber, JE, Huehn, J, Hundemer, M, Hunter, CA, Hwang, WYK, Iannone, A, Ingelfinger, F, Ivison, SM, Jaeck, H-M, Jani, PK, Javega, B, Jonjic, S, Kaiser, T, Kalina, T, Kamradt, T, Kaufmann, SHE, Keller, B, Ketelaars, SLC, Khalilnezhad, A, Khan, S, Kisielow, J, Klenerman, P, Knopf, J, Koay, H-F, Kobow, K, Kolls, JK, Kong, WT, Kopf, M, Korn, T, Kriegsmann, K, Kristyanto, H, Kroneis, T, Krueger, A, Kuehne, J, Kukat, C, Kunkel, D, Kunze-Schumacher, H, Kurosaki, T, Kurts, C, Kvistborg, P, Kwok, I, Landry, J, Lantz, O, Lanuti, P, LaRosa, F, Lehuen, A, LeibundGut-Landmann, S, Leipold, MD, Leung, LYT, Levings, MK, Lino, AC, Liotta, F, Litwin, V, Liu, Y, Ljunggren, H-G, Lohoff, M, Lombardi, G, Lopez, L, Lopez-Botet, M, Lovett-Racke, AE, Lubberts, E, Luche, H, Ludewig, B, Lugli, E, Lunemann, S, Maecker, HT, Maggi, L, Maguire, O, Mair, F, Mair, KH, Mantovani, A, Manz, RA, Marshall, AJ, Martinez-Romero, A, Martrus, G, Marventano, I, Maslinski, W, Matarese, G, Mattioli, AV, Maueroder, C, Mazzoni, A, McCluskey, J, McGrath, M, McGuire, HM, McInnes, IB, Mei, HE, Melchers, F, Melzer, S, Mielenz, D, Miller, SD, Mills, KHG, Minderman, H, Mjosberg, J, Moore, J, Moran, B, Moretta, L, Mosmann, TR, Mueller, S, Multhoff, G, Munoz, LE, Munz, C, Nakayama, T, Nasi, M, Neumann, K, Ng, LG, Niedobitek, A, Nourshargh, S, Nunez, G, O'Connor, J-E, Ochel, A, Oja, A, Ordonez, D, Orfao, A, Orlowski-Oliver, E, Ouyang, W, Oxenius, A, Palankar, R, Panse, I, Pattanapanyasat, K, Paulsen, M, Pavlinic, D, Penter, L, Peterson, P, Peth, C, Petriz, J, Piancone, F, Pickl, WF, Piconese, S, Pinti, M, Pockley, AG, Podolska, MJ, Poon, Z, Pracht, K, Prinz, I, Pucillo, CEM, Quataert, SA, Quatrini, L, Quinn, KM, Radbruch, H, Radstake, TRDJ, Rahmig, S, Rahn, H-P, Rajwa, B, Ravichandran, G, Raz, Y, Rebhahn, JA, Recktenwald, D, Reimer, D, Reis e Sousa, C, Remmerswaal, EBM, Richter, L, Rico, LG, Riddell, A, Rieger, AM, Robinson, JP, Romagnani, C, Rubartelli, A, Ruland, J, Saalmueller, A, Saeys, Y, Saito, T, Sakaguchi, S, Sala-de-Oyanguren, F, Samstag, Y, Sanderson, S, Sandrock, I, Santoni, A, Sanz, RB, Saresella, M, Sautes-Fridman, C, Sawitzki, B, Schadt, L, Scheffold, A, Scherer, HU, Schiemann, M, Schildberg, FA, Schimisky, E, Schlitzer, A, Schlosser, J, Schmid, S, Schmitt, S, Schober, K, Schraivogel, D, Schuh, W, Schueler, T, Schulte, R, Schulz, AR, Schulz, SR, Scotta, C, Scott-Algara, D, Sester, DP, Shankey, TV, Silva-Santos, B, Simon, AK, Sitnik, KM, Sozzani, S, Speiser, DE, Spidlen, J, Stahlberg, A, Stall, AM, Stanley, N, Stark, R, Stehle, C, Steinmetz, T, Stockinger, H, Takahama, Y, Takeda, K, Tan, L, Tarnok, A, Tiegs, G, Toldi, G, Tornack, J, Traggiai, E, Trebak, M, Tree, TIM, Trotter, J, Trowsdale, J, Tsoumakidou, M, Ulrich, H, Urbanczyk, S, van de Veen, W, van den Broek, M, van der Pol, E, Van Gassen, S, Van Isterdael, G, van Lier, RAW, Veldhoen, M, Vento-Asturias, S, Vieira, P, Voehringer, D, Volk, H-D, von Borstel, A, von Volkmann, K, Waisman, A, Walker, RV, Wallace, PK, Wang, SA, Wang, XM, Ward, MD, Ward-Hartstonge, KA, Warnatz, K, Warnes, G, Warth, S, Waskow, C, Watson, JV, Watzl, C, Wegener, L, Weisenburger, T, Wiedemann, A, Wienands, J, Wilharm, A, Wilkinson, RJ, Willimsky, G, Wing, JB, Winkelmann, R, Winkler, TH, Wirz, OF, Wong, A, Wurst, P, Yang, JHM, Yang, J, Yazdanbakhsh, M, Yu, L, Yue, A, Zhang, H, Zhao, Y, Ziegler, SM, Zielinski, C, Zimmermann, J, and Zychlinsky, A
- Abstract
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
- Published
- 2019
14. HIF1A and NFAT5 coordinate Na+-boosted antibacterial defense via enhanced autophagy and autolysosomal targeting
- Author
-
Neubert, P, Weichselbaum, A, Reitinger, C, Schatz, V, Schroeder, A, Ferdinand, JR, Simon, M, Baer, A-L, Brochhausen, C, Gerlach, RG, Tomiuk, S, Hammer, K, Wagner, S, van Zandbergen, G, Binger, KJ, Mueller, DN, Kitada, K, Clatworthy, MR, Kurts, C, Titze, J, Abdullah, Z, Jantsch, J, Neubert, P, Weichselbaum, A, Reitinger, C, Schatz, V, Schroeder, A, Ferdinand, JR, Simon, M, Baer, A-L, Brochhausen, C, Gerlach, RG, Tomiuk, S, Hammer, K, Wagner, S, van Zandbergen, G, Binger, KJ, Mueller, DN, Kitada, K, Clatworthy, MR, Kurts, C, Titze, J, Abdullah, Z, and Jantsch, J
- Abstract
Infection and inflammation are able to induce diet-independent Na+-accumulation without commensurate water retention in afflicted tissues, which favors the pro-inflammatory activation of mouse macrophages and augments their antibacterial and antiparasitic activity. While Na+-boosted host defense against the protozoan parasite Leishmania major is mediated by increased expression of the leishmanicidal NOS2 (nitric oxide synthase 2, inducible), the molecular mechanisms underpinning this enhanced antibacterial defense of mouse macrophages with high Na+ (HS) exposure are unknown. Here, we provide evidence that HS-increased antibacterial activity against E. coli was neither dependent on NOS2 nor on the phagocyte oxidase. In contrast, HS-augmented antibacterial defense hinged on HIF1A (hypoxia inducible factor 1, alpha subunit)-dependent increased autophagy, and NFAT5 (nuclear factor of activated T cells 5)-dependent targeting of intracellular E. coli to acidic autolysosomal compartments. Overall, these findings suggest that the autolysosomal compartment is a novel target of Na+-modulated cell autonomous innate immunity. Abbreviations: ACT: actins; AKT: AKT serine/threonine kinase 1; ATG2A: autophagy related 2A; ATG4C: autophagy related 4C, cysteine peptidase; ATG7: autophagy related 7; ATG12: autophagy related 12; BECN1: beclin 1; BMDM: bone marrow-derived macrophages; BNIP3: BCL2/adenovirus E1B interacting protein 3; CFU: colony forming units; CM-H2DCFDA: 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester; CTSB: cathepsin B; CYBB: cytochrome b-245 beta chain; DAPI: 4,6-diamidino-2-phenylindole; DMOG: dimethyloxallyl glycine; DPI: diphenyleneiodonium chloride; E. coli: Escherichia coli; FDR: false discovery rate; GFP: green fluorescent protein; GSEA: gene set enrichment analysis; GO: gene ontology; HIF1A: hypoxia inducible factor 1, alpha subunit; HUGO: human genome organization; HS: high salt (+ 40 mM of NaCl to standard cell culture conditio
- Published
- 2019
15. P5988Non-classical Ly6C-low monocytes contribute to aortic valve stenosis development in mice
- Author
-
Niepmann, S T, primary, Weissheit, C, additional, Kleiner, J, additional, Kurts, C, additional, Nickenig, G, additional, and Zimmer, S, additional
- Published
- 2019
- Full Text
- View/download PDF
16. Perforin inhibition protects from lethal endothelial damage during fulminant viral hepatitis
- Author
-
Welz, M, Eickhoff, S, Abdullah, Z, Trebicka, J, Gartlan, KH, Spicer, JA, Demetris, AJ, Akhlaghi, H, Anton, M, Manske, K, Zehn, D, Nieswandt, B, Kurts, C, Trapani, JA, Knolle, P, Wohlleber, D, Kastenmueller, W, Welz, M, Eickhoff, S, Abdullah, Z, Trebicka, J, Gartlan, KH, Spicer, JA, Demetris, AJ, Akhlaghi, H, Anton, M, Manske, K, Zehn, D, Nieswandt, B, Kurts, C, Trapani, JA, Knolle, P, Wohlleber, D, and Kastenmueller, W
- Abstract
CD8 T cells protect the liver against viral infection, but can also cause severe liver damage that may even lead to organ failure. Given the lack of mechanistic insights and specific treatment options in patients with acute fulminant hepatitis, we develop a mouse model reflecting a severe acute virus-induced CD8 T cell-mediated hepatitis. Here we show that antigen-specific CD8 T cells induce liver damage in a perforin-dependent manner, yet liver failure is not caused by effector responses targeting virus-infected hepatocytes alone. Additionally, CD8 T cell mediated elimination of cross-presenting liver sinusoidal endothelial cells causes endothelial damage that leads to a dramatically impaired sinusoidal perfusion and indirectly to hepatocyte death. With the identification of perforin-mediated killing as a critical pathophysiologic mechanism of liver failure and the protective function of a new class of perforin inhibitor, our study opens new potential therapeutic angles for fulminant viral hepatitis.
- Published
- 2018
17. Guidelines for the use of flow cytometry and cell sorting in immunological studies
- Author
-
Cossarizza, A. (Andrea), Chang, H.-D. (Hyun-Dong), Radbruch, A. (Andreas), Andrä, I. (Immanuel), Annunziato, F. (Francesco), Bacher, P. (Petra), Barnaba, V. (Vincenzo), Battistini, L. (Luca), Bauer, W.M. (Wolfgang M.), Baumgart, S. (Sabine), Becher, B. (Burkhard), Beisker, W. (Wolfgang), Berek, C. (Claudia), Blanco, A. (Alfonso), Borsellino, G. (Giovanna), Boulais, P.E. (Philip E.), Brinkman, R.R. (Ryan R.), Büscher, M. (Martin), Busch, D.H. (Dirk), Bushnell, T.P. (Timothy P.), Cao, X. (Xuetao), Cavani, A. (Andrea), Chattopadhyay, P.K. (Pratip K.), Cheng, Q. (Qingyu), Chow, S. (Sue), Clerici, M. (Mario), Cooke, A. (Anne), Cosma, A. (Antonio), Cosmi, L. (Lorenzo), Cumano, A. (Ana), Dang, V.D. (Van Duc), Davies, D. (Derek), De Biasi, S. (Sara), Del Zotto, G. (Genny), Della Bella, S. (Silvia), Dellabona, P. (Paolo), Deniz, G. (Gunnur), Dessing, M. (Mark), Diefenbach, A. (Andreas), Santo, J.P. (James) di, Dieli, F. (Francesco), Dolf, A. (Andreas), Donnenberg, V.S. (Vera S.), Dörner, A. (Andrea), Ehrhardt, G.R.A. (Götz R. A.), Endl, E. (Elmar), Engel, P. (Pablo), Engelhardt, B. (Britta), Esser, C. (Charlotte), Everts, B. (Bart), Falk, C.S. (Christine S.), Fehniger, T.A. (Todd A.), Filby, A. (Andrew), Fillatreau, S. (Simon), Follo, M. (Marie), Förster, I. (Irmgard), Foster, J. (John), Foulds, G.A. (Gemma A.), Frenette, P.S. (Paul S.), Galbraith, D. (David), Garbi, N. (Natalio), García-Godoy, M.D. (Maria Dolores), Ghoreschi, K. (Kamran), Gibellini, L. (Lara), Goettlinger, C. (Christoph), Goodyear, C.S. (Carl), Gori, A. (Andrea), Grogan, J.L. (Jane), Gross, M. (Mor), Grützkau, A. (Andreas), Grummitt, D. (Daryl), Hahn, J. (Jonas), Hammer, Q. (Quirin), Hauser, A.E. (Anja E.), Haviland, D.L. (David L.), Hedley, D. (David), Herrera, G. (Guadalupe), Herrmann, M. (Martin), Hiepe, F. (Falk), Holland, T. (Tristan), Hombrink, P. (Pleun), Houston, J.P. (Jessica P.), Hoyer, B.F. (Bimba F.), Huang, B. (Bo), Hunter, C.A. (Christopher A.), Iannone, A. (Anna), Jäck, H.-M. (Hans-Martin), Jávega, B. (Beatriz), Jonjic, S. (Stipan), Juelke, K. (Kerstin), Jung, S. (Steffen), Kaiser, T. (Toralf), Kalina, T. (Tomas), Keller, B. (Baerbel), Khan, S. (Srijit), Kienhöfer, D. (Deborah), Kroneis, T. (Thomas), Kunkel, D. (Désirée), Kurts, C. (Christian), Kvistborg, P. (Pia), Lannigan, J. (Joanne), Lantz, O. (Olivier), Larbi, A. (Anis), LeibundGut-Landmann, S. (Salome), Leipold, M.D. (Michael D.), Levings, M.K., Litwin, V. (Virginia), Liu, Y. (Yanling), Lohoff, M. (Michael), Lombardi, G. (Giovanna), Lopez, L. (Lilly), Lovett-Racke, A. (Amy), Lubberts, E.W. (Erik), Ludewig, B. (Burkhard), Lugli, E. (Enrico), Maecker, H.T. (Holden T.), Martrus, G. (Glòria), Matarese, G. (Giuseppe), Maueröder, C. (Christian), McGrath, M. (Mairi), McInnes, I.B. (Iain), Mei, H.E. (Henrik E.), Melchers, F. (Fritz), Melzer, S. (Susanne), Mielenz, D. (Dirk), Mills, K. (Kingston), Mjösberg, J.M. (Jenny), Moore, J. (Jonni), Moran, B. (Barry), Moretta, A. (Alessandro), Moretta, L. (Lorenzo), Mosmann, T.R. (Tim R.), Müller, S. (Susann), Müller, W. (Werner), Münz, C. (Christian), Multhoff, G. (Gabriele), Munoz, L.E. (Luis Enrique), Murphy, K.M. (Kenneth M.), Nakayama, T. (Toshinori), Nasi, M. (Milena), Neudörfl, C. (Christine), Nolan, J. (John), Nourshargh, S. (Sussan), O'Connor, J.-E. (José-Enrique), Ouyang, W. (Wenjun), Oxenius, A. (Annette), Palankar, R. (Raghav), Panse, I. (Isabel), Peterson, P. (Pärt), Peth, C. (Christian), Petriz, J. (Jordi), Philips, D. (Daisy), Pickl, W. (Winfried), Piconese, S. (Silvia), Pinti, M. (Marcello), Pockley, A.G. (A. Graham), Podolska, M.J. (Malgorzata Justyna), Pucillo, C. (Carlo), Quataert, S.A. (Sally A.), Radstake, T.R.D.J. (Timothy R. D. J.), Rajwa, B. (Bartek), Rebhahn, J.A. (Jonathan A.), Recktenwald, D. (Diether), Remmerswaal, D. (Daniëlle), Rezvani, K. (Katy), Rico, L.G. (Laura G.), Robinson, J.P. (J. Paul), Romagnani, C. (Chiara), Rubartelli, A. (Anna), Ruland, J. (Jürgen), Sakaguchi, S. (Shimon), Sala-de-Oyanguren, F. (Francisco), Samstag, Y. (Yvonne), Sanderson, S. (Sharon), Sawitzki, B. (Birgit), Scheffold, A. (Alexander), Schiemann, M. (Matthias), Schildberg, F. (Frank), Schimisky, E. (Esther), Schmid, S.A. (Stephan A), Schmitt, S. (Steffen), Schober, K. (Kilian), Schüler, T. (Thomas), Schulz, A.R. (Axel Ronald), Schumacher, T.N. (Ton), Scotta, C. (Cristiano), Shankey, T.V. (T. Vincent), Shemer, A. (Anat), Simon, A.-K. (Anna-Katharina), Spidlen, J. (Josef), Stall, A.M. (Alan M.), Stark, R. (Regina), Stehle, C. (Christina), Stein, M. (Merle), Steinmetz, T. (Tobit), Stockinger, H. (Hannes), Takahama, Y. (Yousuke), Tarnok, A. (Attila), Tian, Z. (ZhiGang), Toldi, G. (Gergely), Tornack, J. (Julia), Traggiai, E. (Elisabetta), Trotter, J. (Joe), Ulrich, H. (Henning), van der Braber, M. (Marlous), Van Lier, R.A.W. (Rene A. W.), Veldhoen, M. (Marcello), Vento-Asturias, S. (Salvador), Vieira, P. (Paulo), Voehringer, D. (David), Volk, H.D. (Hans), von Volkmann, K. (Konrad), Waisman, A. (Ari), Walker, R. (Rachael), Ward, M.D. (Michael D.), Warnatz, K. (Klaus), Warth, S. (Sarah), Watson, J.V. (James V.), Watzl, C. (Carsten), Wegener, L. (Leonie), Wiedemann, A. (Annika), Wienands, J. (Jürgen), Willimsky, G. (Gerald), Wing, J. (James), Wurst, P. (Peter), Yu, L. (Liping), Yue, A. (Alice), Zhang, Q. (Qianjun), Zhao, Y. (Yi), Ziegler, S. (Susanne), Zimmermann, J. (Jakob), Cossarizza, A. (Andrea), Chang, H.-D. (Hyun-Dong), Radbruch, A. (Andreas), Andrä, I. (Immanuel), Annunziato, F. (Francesco), Bacher, P. (Petra), Barnaba, V. (Vincenzo), Battistini, L. (Luca), Bauer, W.M. (Wolfgang M.), Baumgart, S. (Sabine), Becher, B. (Burkhard), Beisker, W. (Wolfgang), Berek, C. (Claudia), Blanco, A. (Alfonso), Borsellino, G. (Giovanna), Boulais, P.E. (Philip E.), Brinkman, R.R. (Ryan R.), Büscher, M. (Martin), Busch, D.H. (Dirk), Bushnell, T.P. (Timothy P.), Cao, X. (Xuetao), Cavani, A. (Andrea), Chattopadhyay, P.K. (Pratip K.), Cheng, Q. (Qingyu), Chow, S. (Sue), Clerici, M. (Mario), Cooke, A. (Anne), Cosma, A. (Antonio), Cosmi, L. (Lorenzo), Cumano, A. (Ana), Dang, V.D. (Van Duc), Davies, D. (Derek), De Biasi, S. (Sara), Del Zotto, G. (Genny), Della Bella, S. (Silvia), Dellabona, P. (Paolo), Deniz, G. (Gunnur), Dessing, M. (Mark), Diefenbach, A. (Andreas), Santo, J.P. (James) di, Dieli, F. (Francesco), Dolf, A. (Andreas), Donnenberg, V.S. (Vera S.), Dörner, A. (Andrea), Ehrhardt, G.R.A. (Götz R. A.), Endl, E. (Elmar), Engel, P. (Pablo), Engelhardt, B. (Britta), Esser, C. (Charlotte), Everts, B. (Bart), Falk, C.S. (Christine S.), Fehniger, T.A. (Todd A.), Filby, A. (Andrew), Fillatreau, S. (Simon), Follo, M. (Marie), Förster, I. (Irmgard), Foster, J. (John), Foulds, G.A. (Gemma A.), Frenette, P.S. (Paul S.), Galbraith, D. (David), Garbi, N. (Natalio), García-Godoy, M.D. (Maria Dolores), Ghoreschi, K. (Kamran), Gibellini, L. (Lara), Goettlinger, C. (Christoph), Goodyear, C.S. (Carl), Gori, A. (Andrea), Grogan, J.L. (Jane), Gross, M. (Mor), Grützkau, A. (Andreas), Grummitt, D. (Daryl), Hahn, J. (Jonas), Hammer, Q. (Quirin), Hauser, A.E. (Anja E.), Haviland, D.L. (David L.), Hedley, D. (David), Herrera, G. (Guadalupe), Herrmann, M. (Martin), Hiepe, F. (Falk), Holland, T. (Tristan), Hombrink, P. (Pleun), Houston, J.P. (Jessica P.), Hoyer, B.F. (Bimba F.), Huang, B. (Bo), Hunter, C.A. (Christopher A.), Iannone, A. (Anna), Jäck, H.-M. (Hans-Martin), Jávega, B. (Beatriz), Jonjic, S. (Stipan), Juelke, K. (Kerstin), Jung, S. (Steffen), Kaiser, T. (Toralf), Kalina, T. (Tomas), Keller, B. (Baerbel), Khan, S. (Srijit), Kienhöfer, D. (Deborah), Kroneis, T. (Thomas), Kunkel, D. (Désirée), Kurts, C. (Christian), Kvistborg, P. (Pia), Lannigan, J. (Joanne), Lantz, O. (Olivier), Larbi, A. (Anis), LeibundGut-Landmann, S. (Salome), Leipold, M.D. (Michael D.), Levings, M.K., Litwin, V. (Virginia), Liu, Y. (Yanling), Lohoff, M. (Michael), Lombardi, G. (Giovanna), Lopez, L. (Lilly), Lovett-Racke, A. (Amy), Lubberts, E.W. (Erik), Ludewig, B. (Burkhard), Lugli, E. (Enrico), Maecker, H.T. (Holden T.), Martrus, G. (Glòria), Matarese, G. (Giuseppe), Maueröder, C. (Christian), McGrath, M. (Mairi), McInnes, I.B. (Iain), Mei, H.E. (Henrik E.), Melchers, F. (Fritz), Melzer, S. (Susanne), Mielenz, D. (Dirk), Mills, K. (Kingston), Mjösberg, J.M. (Jenny), Moore, J. (Jonni), Moran, B. (Barry), Moretta, A. (Alessandro), Moretta, L. (Lorenzo), Mosmann, T.R. (Tim R.), Müller, S. (Susann), Müller, W. (Werner), Münz, C. (Christian), Multhoff, G. (Gabriele), Munoz, L.E. (Luis Enrique), Murphy, K.M. (Kenneth M.), Nakayama, T. (Toshinori), Nasi, M. (Milena), Neudörfl, C. (Christine), Nolan, J. (John), Nourshargh, S. (Sussan), O'Connor, J.-E. (José-Enrique), Ouyang, W. (Wenjun), Oxenius, A. (Annette), Palankar, R. (Raghav), Panse, I. (Isabel), Peterson, P. (Pärt), Peth, C. (Christian), Petriz, J. (Jordi), Philips, D. (Daisy), Pickl, W. (Winfried), Piconese, S. (Silvia), Pinti, M. (Marcello), Pockley, A.G. (A. Graham), Podolska, M.J. (Malgorzata Justyna), Pucillo, C. (Carlo), Quataert, S.A. (Sally A.), Radstake, T.R.D.J. (Timothy R. D. J.), Rajwa, B. (Bartek), Rebhahn, J.A. (Jonathan A.), Recktenwald, D. (Diether), Remmerswaal, D. (Daniëlle), Rezvani, K. (Katy), Rico, L.G. (Laura G.), Robinson, J.P. (J. Paul), Romagnani, C. (Chiara), Rubartelli, A. (Anna), Ruland, J. (Jürgen), Sakaguchi, S. (Shimon), Sala-de-Oyanguren, F. (Francisco), Samstag, Y. (Yvonne), Sanderson, S. (Sharon), Sawitzki, B. (Birgit), Scheffold, A. (Alexander), Schiemann, M. (Matthias), Schildberg, F. (Frank), Schimisky, E. (Esther), Schmid, S.A. (Stephan A), Schmitt, S. (Steffen), Schober, K. (Kilian), Schüler, T. (Thomas), Schulz, A.R. (Axel Ronald), Schumacher, T.N. (Ton), Scotta, C. (Cristiano), Shankey, T.V. (T. Vincent), Shemer, A. (Anat), Simon, A.-K. (Anna-Katharina), Spidlen, J. (Josef), Stall, A.M. (Alan M.), Stark, R. (Regina), Stehle, C. (Christina), Stein, M. (Merle), Steinmetz, T. (Tobit), Stockinger, H. (Hannes), Takahama, Y. (Yousuke), Tarnok, A. (Attila), Tian, Z. (ZhiGang), Toldi, G. (Gergely), Tornack, J. (Julia), Traggiai, E. (Elisabetta), Trotter, J. (Joe), Ulrich, H. (Henning), van der Braber, M. (Marlous), Van Lier, R.A.W. (Rene A. W.), Veldhoen, M. (Marcello), Vento-Asturias, S. (Salvador), Vieira, P. (Paulo), Voehringer, D. (David), Volk, H.D. (Hans), von Volkmann, K. (Konrad), Waisman, A. (Ari), Walker, R. (Rachael), Ward, M.D. (Michael D.), Warnatz, K. (Klaus), Warth, S. (Sarah), Watson, J.V. (James V.), Watzl, C. (Carsten), Wegener, L. (Leonie), Wiedemann, A. (Annika), Wienands, J. (Jürgen), Willimsky, G. (Gerald), Wing, J. (James), Wurst, P. (Peter), Yu, L. (Liping), Yue, A. (Alice), Zhang, Q. (Qianjun), Zhao, Y. (Yi), Ziegler, S. (Susanne), and Zimmermann, J. (Jakob)
- Published
- 2017
- Full Text
- View/download PDF
18. CCR2-abhängige Makrophagen sind die Hauptproduzenten von VEGF im Mausmodell der laserinduzierten choroidalen Neovaskularisation
- Author
-
Alex, Anne F., Urzynicok, T.A., Engel, D., Kurts, C., and Eter, N.
- Subjects
genetic structures ,ddc: 610 ,sense organs ,610 Medical sciences ,Medicine ,eye diseases - Abstract
Hintergrund: In dieser Studie wurden die mononukleären Phagozyten auf ihre Rolle bei der Produktion von vascular endothelial growth factor (VEGF) im laserinduzierten Modell der choroidalen Neovaskularisation (CNV) untersucht. Die Auswirkungen auf die CNV in einem CCR2-loss-of-function-Modell wurden[for full text, please go to the a.m. URL], 175. Versammlung des Vereins Rheinisch-Westfälischer Augenärzte
- Published
- 2013
19. Die Rolle VEGF-exprimierender mononukleärer Phagozyten im murinen Modell der Laser-induzierten choroidalen Neovaskularisation
- Author
-
Urzynicok, TA, Alex, AF, Engel, D, Kurts, C, and Eter, N
- Subjects
ddc: 610 ,610 Medical sciences ,Medicine - Abstract
Hintergrund: Ziel dieser Studie war, im murinen CNV-Modell zu beurteilen, ob infiltrierende oder residente Phagozyten eine Quelle für VEGF sind, und somit zu einer Neovaskularisation beitragen können. Methoden: Zur Visualisierung mononukleärer Phagozyten wurden CX3CR1-Reportermäuse[for full text, please go to the a.m. URL], 25. Jahrestagung der Retinologischen Gesellschaft
- Published
- 2012
- Full Text
- View/download PDF
20. Inhibitory effect of epigallocatechin gallate (EGCG), resveratrol and curcumin on the proliferation of human retinal pigment epithelial cells in vitro
- Author
-
Eter, N, Alex, AF, Spitznas, M, Tittel, AP, Holz, FG, and Kurts, C
- Subjects
ddc: 610 - Published
- 2008
21. Die mesenterialen Lymphknoten und das GALT spielen eine zentrale Rolle bei der Vermittlung des gastrointestinalen Field Effects
- Author
-
Koscielny, A, Engel, D, Kurts, C, and Kalff, JC
- Subjects
ddc: 610 - Published
- 2008
22. Gastrointestinaler 'field effect': Folge immunologischer Prozesse im Darm?
- Author
-
Koscielny, A, Börner, T, Engel, D, Kurts, C, Hirner, A, and Kalff, JC
- Subjects
ddc: 610 - Published
- 2006
23. CCR2-abhängige Makrophagen sind die Hauptproduzenten von VEGF im Mausmodell der laserinduzierten choroidalen Neovaskularisation
- Author
-
Alex, AF, Urzynicok, TA, Engel, D, Kurts, C, Eter, N, Alex, AF, Urzynicok, TA, Engel, D, Kurts, C, and Eter, N
- Published
- 2013
24. Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells but do not directly contribute to fibrosis.
- Author
-
Kitching A.R., Ooi J.D., Coates P.T., Hickey M.J., Holdsworth S.R., Kurts C., Engel D.R., Snelgrove S.L., Kausman J.Y., Lo C., Kitching A.R., Ooi J.D., Coates P.T., Hickey M.J., Holdsworth S.R., Kurts C., Engel D.R., Snelgrove S.L., Kausman J.Y., and Lo C.
- Abstract
Unilateral ureteral obstruction (UUO) is a well-characterized murine model of renal inflammation leading to fibrosis. Renal dendritic cells (DCs) constitute a significant portion of kidney leukocytes and may participate in local inflammation and have critical roles in antigen presentation. The heterogeneity in renal DC populations and surface marker overlap with monocytes/macrophages has made studying renal DCs difficult. These studies used CD11c-promoter driven reporter/depletion mice to study DCs in vivo. Studying early local inflammatory events (day 3 of UUO), in vivo multiphoton imaging of the intact kidney of CD11c reporter mice revealed more dendrite extensions and increased activity of renal DCs in real time. Phenotypic analysis suggested resident DC maturation in obstructed kidneys with increased CD11b and less F4/80 expressed. CD11bhi Gr-1+ inflammatory DCs were also present in obstructed kidneys. T-cell receptor transgenic mice revealed enhanced antigen-presenting capacity of renal DCs after UUO, with increased antigen-specific T-cell proliferation in vivo and ex vivo. However, conditional DC ablation at days 0, 2, or 4 did not attenuate fibrosis or apoptosis 7 days after UUO, and depletion at 7 days did not alter outcomes at day 14. Therefore, after UUO, renal DCs exhibit inflammatory morphological and functional characteristics and are more effective antigen-presenting cells, but they do not directly contribute to tubulointerstitial damage and fibrosis. © 2012 American Society for Investigative Pathology.
- Published
- 2012
25. Endogenous foxp3+ T-regulatory cells suppress anti-glomerular basement membrane nephritis.
- Author
-
Hickey M.J., Holdsworth S.R., O'Sullivan K.M., Kurts C., Kitching A.R., Ooi J.D., Snelgrove S.L., Engel D.R., Hochheiser K., Ludwig-Portugall I., Nozaki Y., Hickey M.J., Holdsworth S.R., O'Sullivan K.M., Kurts C., Kitching A.R., Ooi J.D., Snelgrove S.L., Engel D.R., Hochheiser K., Ludwig-Portugall I., and Nozaki Y.
- Abstract
Foxp3+ T-regulatory cells (Tregs) may suppress pathogenic inflammation; however, although transferred Tregs lessen glomerulonephritis in mice, the role of endogenous foxp3 cells is not known. To study this, we characterized endogenous foxp3 cells in accelerated anti-glomerular basement membrane (GBM) nephritis by using foxp3 GFP reporter mice to track their responses in early and established disease. Further, diphtheria toxin was used to ablate foxp3 Tregs in foxp3 DTR mice after establishing an immune response. In this model, mice were immunized with sheep globulin in adjuvant, and sheep anti-mouse GBM globulin was injected after 4 days to initiate progressive histological and functional injury. Intrarenal leukocytic infiltrates were increased by day 3 but intrarenal foxp3 Tregs, present in interstitial and periglomerular areas, were only increased at day 7. Ablation of foxp3 Tregs after injection of anti-GBM globulin increased renal injury and systemic T-cell responses, including increased interferon-gamma and interleukin-17A (IL-17A) production, but no change in antibody titers. Compared with foxp3 Tregs isolated from naive mice, those from immunized mice produced more IL-10 and more effectively regulated CD4 foxp3 responder T cells. Thus, endogenous foxp3 Tregs infiltrate the kidney in glomerulonephritis, and deleting foxp3 cells after the induction of immune responses upregulated T-cell reactions and enhanced disease. Hence, endogenous foxp3 cells have increased suppressive capacity after immune stimuli. © 2011 International Society of Nephrology.
- Published
- 2012
26. Major histocompatibility complex class II expression by intrinsic renal cells is required for crescentic glomerulonephritis.
- Author
-
Kurts C., Tipping P.G., Li S., Kontgen F., Holdsworth S.R., Kurts C., Tipping P.G., Li S., Kontgen F., and Holdsworth S.R.
- Abstract
The requirement for major histocompatibility complex class II (MHC II) to initiate immune renal injury was studied in a murine model of CD4+ T cell-dependent crescentic glomerulonephritis (GN). C57BL/6 (MHC II(+/+)) mice developed crescentic GN with glomerular CD4+ T cell infiltration and renal injury, in response to a nephritogenic antigen (sheep globulin) planted on their glomerular basement membrane. MHC II-deficient C57BL/6 mice (MHC II(- /-)) did not develop crescentic GN, CD4+ T cell infiltration, or injury, indicating that this form of immune glomerular injury is MHC II dependent. The requirement for MHC II expression by intrinsic renal cells was studied in chimeric mice, which expressed MHC II on bone marrow-derived cells and in the thymus, but not in the kidneys. These chimeric mice had normal T and B cell populations and MHC II expression in their spleens and lymph nodes and developed an immune response to systemically and cutaneously administered sheep globulin. However, they did not develop crescentic GN, CD4+ T cell infiltration, or renal injury in response to the sheep globulin planted in their glomeruli. These studies demonstrate that interaction of CD4+ T cells with intrinsic renal cells expressing MHC II is required for development of cell-mediated immune renal injury.
- Published
- 2012
27. Subtotal ablation of parietal epithelial cells induces crescent formation.
- Author
-
Sicking, E.M., Fuss, A., Uhlig, S., Jirak, P., Dijkman, H., Wetzels, J., Engel, D.R., Urzynicok, T., Heidenreich, S., Kriz, W., Kurts, C., Ostendorf, T., Floege, J., Smeets, B., Moeller, M.J., Sicking, E.M., Fuss, A., Uhlig, S., Jirak, P., Dijkman, H., Wetzels, J., Engel, D.R., Urzynicok, T., Heidenreich, S., Kriz, W., Kurts, C., Ostendorf, T., Floege, J., Smeets, B., and Moeller, M.J.
- Abstract
01 april 2012, Item does not contain fulltext, Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman's space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman's capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents.
- Published
- 2012
28. The postoperative ileus - an immunological disease?
- Author
-
Koscielny, A, Engel, D, Wehner, S, Kurts, C, Kalff, JC, Koscielny, A, Engel, D, Wehner, S, Kurts, C, and Kalff, JC
- Published
- 2011
29. Der gastrointestinale field effect - eine chirurgisch getriggerte immunologische Reaktion?
- Author
-
Koscielny, A, Engel, D, Kurts, C, Hirner, A, Kalff, JC, Koscielny, A, Engel, D, Kurts, C, Hirner, A, and Kalff, JC
- Published
- 2010
30. The role of lymphoid tissue in the attenuation of the postoperative ileus
- Author
-
Koscielny, A., primary, Engel, D., additional, Maurer, J., additional, Wehner, S., additional, Kurts, C., additional, and Kalff, J. C., additional
- Published
- 2013
- Full Text
- View/download PDF
31. Impact of CCR7 on the gastrointestinal field effect
- Author
-
Koscielny, A., primary, Engel, D., additional, Maurer, J., additional, Hirner, A., additional, Kurts, C., additional, and Kalff, J. C., additional
- Published
- 2011
- Full Text
- View/download PDF
32. Peripheral deletion of autoreactive CD8 T cells by cross presentation of self-antigen occurs by a Bcl-2-inhibitable pathway mediated by bim
- Author
-
Davey, GM, Kurts, C, Miller, JFAP, Bouillet, P, Strasser, A, Brooks, AG, Carbone, FR, Heath, WR, Davey, GM, Kurts, C, Miller, JFAP, Bouillet, P, Strasser, A, Brooks, AG, Carbone, FR, and Heath, WR
- Abstract
By transgenic expression of ovalbumin (OVA) as a model self antigen in the beta cells of the pancreas, we have shown that self tolerance can be maintained by the cross-presentation of this antigen on dendritic cells in the draining lymph nodes. Such cross-presentation causes initial activation of OVA-specific CD8 T cells, which proliferate but are ultimately deleted; a process referred to as cross-tolerance. Here, we investigated the molecular basis of cross-tolerance. Deletion of CD8 T cells was prevented by overexpression of Bcl-2, indicating that cross-tolerance was mediated by a Bcl-2 inhibitable pathway. Recently, Bim, a pro-apoptotic Bcl-2 family member whose function can be inhibited by Bcl-2, was found to play a critical role in the deletion of autoreactive thymocytes, leading us to examine its role in cross-tolerance. Bim-deficient T cells were not deleted in response to cross-presented self-antigen, strongly implicating Bim as the pro-apoptotic mediator of cross-tolerance.
- Published
- 2002
33. Th17 cells: a third subset of CD4+ T effector cells involved in organ-specific autoimmunity
- Author
-
Kurts, C., primary
- Published
- 2007
- Full Text
- View/download PDF
34. Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction
- Author
-
Kurts, C, Miller, JFAP, Subramaniam, RM, Carbone, FR, Heath, WR, Kurts, C, Miller, JFAP, Subramaniam, RM, Carbone, FR, and Heath, WR
- Abstract
Naive T cells recirculate mainly within the secondary lymphoid compartment, but once activated they can enter peripheral tissues and perform effector functions. To activate naive T cells, foreign antigens must traffic from the site of infection to the draining lymph nodes, where they can be presented by professional antigen presenting cells. For major histocompatibility complex class I-restricted presentation to CD8+ T cells, this can occur via the cross-presentation pathway. Here, we investigated the conditions allowing antigen access to this pathway. We show that the level of antigen expressed by peripheral tissues must be relatively high to facilitate cross-presentation to naive CD8+ T cells. Below this level, peripheral antigens did not stimulate by cross-presentation and were ignored by naive CD8+ T cells, although they could sensitize tissue cells for destruction by activated cytotoxic T lymphocytes (CTLs). Interestingly, CTL-mediated tissue destruction facilitated cross-presentation of low dose antigens for activation of naive CD8+ T cells. This represents the first in vivo evidence that cellular destruction can enhance access of exogenous antigens to the cross-presentation pathway. These data indicate that the cross-presentation pathway focuses on high dose antigens and those released during tissue destruction.
- Published
- 1998
35. Major histocompatibility complex class II expression by intrinsic renal cells is required for crescentic glomerulonephritis.
- Author
-
Li, S, Kurts, C, Köntgen, F, Holdsworth, SR, Tipping, PG, Li, S, Kurts, C, Köntgen, F, Holdsworth, SR, and Tipping, PG
- Abstract
The requirement for major histocompatibility complex class II (MHC II) to initiate immune renal injury was studied in a murine model of CD4(+) T cell-dependent crescentic glomerulonephritis (GN). C57BL/6 (MHC II+/+) mice developed crescentic GN with glomerular CD4(+) T cell infiltration and renal injury, in response to a nephritogenic antigen (sheep globulin) planted on their glomerular basement membrane. MHC II-deficient C57BL/6 mice (MHC II-/-) did not develop crescentic GN, CD4(+) T cell infiltration, or injury, indicating that this form of immune glomerular injury is MHC II dependent. The requirement for MHC II expression by intrinsic renal cells was studied in chimeric mice, which expressed MHC II on bone marrow-derived cells and in the thymus, but not in the kidneys. These chimeric mice had normal T and B cell populations and MHC II expression in their spleens and lymph nodes and developed an immune response to systemically and cutaneously administered sheep globulin. However, they did not develop crescentic GN, CD4(+) T cell infiltration, or renal injury in response to the sheep globulin planted in their glomeruli. These studies demonstrate that interaction of CD4(+) T cells with intrinsic renal cells expressing MHC II is required for development of cell-mediated immune renal injury.
- Published
- 1998
36. Cross-tolerance: A pathway for inducing tolerance to peripheral tissue antigens
- Author
-
Heath, WR, Kurts, C, Miller, JFAP, Carbone, FR, Heath, WR, Kurts, C, Miller, JFAP, and Carbone, FR
- Published
- 1998
37. The peripheral deletion of autoreactive CD8+ T cells induced by cross-presentation of self-antigens involves signaling through CD95 (Fas, Apo-1)
- Author
-
Kurts, C, Heath, WR, Kosaka, H, Miller, JFAP, Carbone, FR, Kurts, C, Heath, WR, Kosaka, H, Miller, JFAP, and Carbone, FR
- Abstract
Recently, we demonstrated that major histocompatibility complex class I-restricted cross-presentation of exogenous self-antigens can induce peripheral T cell tolerance by deletion of autoreactive CD8+ T cells. In these studies, naive ovalbumin (OVA)-specific CD8+ T cells from the transgenic line OT-I were injected into transgenic mice expressing membrane-bound OVA (mOVA) under the control of the rat insulin promoter (RIP) in pancreatic islets, kidney proximal tubules, and the thymus. Cross-presentation of tissue-derived OVA in the renal and pancreatic lymph nodes resulted in activation, proliferation, and then the deletion of OT-I cells. In this report, we investigated the molecular mechanisms underlying this form of T cell deletion. OT-I mice were crossed to tumor necrosis factor receptor 2 (TNFR2) knockout mice and to CD95 (Fas, Apo-1) deficient mutant lpr mice. Wild-type and TNFR2-deficient OT-I cells were activated and then deleted when transferred into RIP-mOVA mice, whereas CD95-deficient OT-I cells were not susceptible to deletion by cross-presentation. Furthermore, cross-presentation led to upregulation of the CD95 molecule on the surface of wild-type OT-I cells in vivo, consistent with the idea that this is linked to rendering autoreactive T cells susceptible to CD95-mediated signaling. This study represents the first evidence that CD95 is involved in the deletion of autoreactive CD8+ T cells in the whole animal.
- Published
- 1998
38. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells
- Author
-
Kurts, C, Kosaka, H, Carbone, FR, Miller, JFAP, Heath, WR, Kurts, C, Kosaka, H, Carbone, FR, Miller, JFAP, and Heath, WR
- Abstract
In this report, we show that cross-presentation of self-antigens can lead to the peripheral deletion of autoreactive CD8(+) T cells. We had previously shown that transfer of ovalbumin (OVA)-specific CD8(+) T cells (OT-I cells) into rat insulin promoter-membrane-bound form of OVA transgenic mice, which express the model autoantigen OVA in the proximal tubular cells of the kidneys, the beta cells of the pancreas, the thymus, and the testis of male mice, led to the activation of OT-I cells in the draining lymph nodes. This was due to class I-restricted cross-presentation of exogenous OVA on a bone marrow-derived antigen presenting cell (APC) population. Here, we show that adoptively transferred or thymically derived OT-I cells activated by cross-presentation are deleted from the peripheral pool of recirculating lymphocytes. Such deletion only required antigen recognition on a bone marrow-derived population, suggesting that cells of the professional APC class may be tolerogenic under these circumstances. Our results provide a mechanism by which the immune system can induce CD8(+) T cell tolerance to autoantigens that are expressed outside the recirculation pathway of naive T cells.
- Published
- 1997
39. CD4+ T cell help impairs CD8+ T cell deletion induced by cross-presentation of self-antigens and favors autoimmunity
- Author
-
Kurts, C, Carbone, FR, Barnden, M, Blanas, E, Allison, J, Heath, WR, Miller, JFAP, Kurts, C, Carbone, FR, Barnden, M, Blanas, E, Allison, J, Heath, WR, and Miller, JFAP
- Abstract
Self-antigens expressed in extrathymic tissues such as the pancreas can be transported to draining lymph nodes and presented in a class I-restricted manner by bone marrow-derived antigen-presenting cells. Such cross-presentation of self-antigens leads to CD8+ T cell tolerance induction via deletion. In this report, we investigate the influence of CD4+ T cell help on this process. Small numbers of autoreactive OVA-specific CD8+ T cells were unable to cause diabetes when adoptively transferred into mice expressing ovalbumin in the pancreatic beta cells. Coinjection of OVA-specific CD4+ helper T cells, however, led to diabetes in a large proportion of mice (68%), suggesting that provision of help favored induction of autoimmunity. Analysis of the fate of CD8+ T cells indicated that CD4(+) T cell help impaired their deletion. These data indicate that control of such help is critical for the maintenance of CD8+ T cell tolerance induced by cross-presentation.
- Published
- 1997
40. Constitutive class I-restricted exogenous presentation of self antigens in vivo
- Author
-
Kurts, C, Heath, WR, Carbone, FR, Allison, J, Miller, JFAP, Kosaka, H, Kurts, C, Heath, WR, Carbone, FR, Allison, J, Miller, JFAP, and Kosaka, H
- Abstract
Ovalbumin (OVA)-specific CD8+ T cells from the T cell receptor-transgenic line OT-I (OT-I cells) were injected into unirradiated transgenic RIP-mOVA mice, which express a membrane-bound form of OVA (mOVA) in the pancreatic islet beta cells and the renal proximal tubular cells. OT-I cells accumulated in the draining lymph nodes (LN) of the kidneys and pancreas and in no other LN. They displayed an activated phenotype and a proportion entered cell cycle. Unilateral nephrectomy 7-13 d before inoculation of OT-I cells into RIP-mOVA mice allowed the injected T cells to home only to the regional LN of the remaining kidney (and pancreas), but when the operation was performed 4 h before injecting the T cells, homing to the LN of the excised kidney was evident. When the bone marrow of RIP-mOVA mice was replaced with one of a major histocompatibility haplotype incapable of presenting OVA to OT-I cells, no homing or activation was detectable. Therefore, OT-I cells were activated by OVA presented by short-lived antigen-presenting cells of bone marrow origin present in the draining LN of OVA-expressing tissue. These results provide the first evidence that tissue-associated "self" antigens can be presented in the context of class I via an exogenous processing pathway. This offers a constitutive mechanism whereby T cells can be primed to antigens that are present in nonlymphoid tissues, which are not normally surveyed by recirculating naive T cells.
- Published
- 1996
41. Constitutive class I-restricted exogenous presentation of self antigens in vivo.
- Author
-
Kurts, C, primary, Heath, W R, additional, Carbone, F R, additional, Allison, J, additional, Miller, J F, additional, and Kosaka, H, additional
- Published
- 1996
- Full Text
- View/download PDF
42. Licensing of myeloid cells promotes central nervous system autoimmunity and is controlled by peroxisome proliferator-activated receptor [gamma].
- Author
-
Hucke S, Floßdorf J, Grützke B, Dunay IR, Frenzel K, Jungverdorben J, Linnartz B, Mack M, Peitz M, Brüstle O, Kurts C, Klockgether T, Neumann H, Prinz M, Wiendl H, Knolle P, and Klotz L
- Published
- 2012
43. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
- Author
-
Lara Gibellini, Sussan Nourshargh, Susanna Cardell, Wlodzimierz Maslinski, Mar Felipo-Benavent, Florian Mair, Hans-Martin Jäck, Lilly Lopez, Klaus Warnatz, John Trowsdale, Diana Ordonez, Marcus Eich, William Hwang, Anne Cooke, Dirk Mielenz, Alberto Orfao, Winfried F. Pickl, Vladimir Benes, Alice Yue, T. Vincent Shankey, Maria Tsoumakidou, Virginia Litwin, Gelo Victoriano Dela Cruz, Andrea Cavani, Sara De Biasi, Larissa Nogueira Almeida, Jonathan J M Landry, Claudia Haftmann, Charlotte Esser, Ana Cumano, Anneke Wilharm, Francesco Dieli, Rudi Beyaert, Alessio Mazzoni, Burkhard Ludewig, Carlo Pucillo, Dirk H. Busch, Joe Trotter, Stipan Jonjić, Marc Veldhoen, Josef Spidlen, Aja M. Rieger, Dieter Adam, Srijit Khan, Todd A. Fehniger, Giuseppe Matarese, Maximilien Evrard, Christian Maueröder, Steffen Schmitt, Kristin A. Hogquist, Barry Moran, Raghavendra Palankar, Markus Feuerer, S Schmid, Susann Rahmig, Amy E. Lovett-Racke, James V. Watson, Megan K. Levings, Susanne Melzer, Dinko Pavlinic, Christopher M. Harpur, Christina Stehle, A. Graham Pockley, Toshinori Nakayama, Attila Tárnok, Juhao Yang, Michael Lohoff, Paulo Vieira, Francisco Sala-de-Oyanguren, Christian Kurts, Anastasia Gangaev, Alfonso Blanco, Hans Scherer, Regine J. Dress, Bruno Silva-Santos, Kiyoshi Takeda, Bimba F. Hoyer, Ilenia Cammarata, Daryl Grummitt, Isabel Panse, Günnur Deniz, Bianka Baying, Friederike Ebner, Esther Schimisky, Leo Hansmann, Thomas Kamradt, Edwin van der Pol, Daniel Scott-Algara, Anna Iannone, Giorgia Alvisi, Sebastian R. Schulz, Francesco Liotta, Irmgard Förster, Beatriz Jávega, Hans-Peter Rahn, Caetano Reis e Sousa, Livius Penter, Xuetao Cao, David P. Sester, Keisuke Goda, Peter Wurst, Iain B. McInnes, Ricardo T. Gazzinelli, Federica Piancone, Gerald Willimsky, Yotam Raz, Pärt Peterson, Wolfgang Fritzsche, Yvonne Samstag, Martin Büscher, Thomas Schüler, Susanne Hartmann, Robert J. Wilkinson, Anna E. S. Brooks, Steven L. C. Ketelaars, Catherine Sautès-Fridman, Anna Rubartelli, Petra Bacher, Katja Kobow, Marco A. Cassatella, Andrea Hauser, Henrik E. Mei, Kilian Schober, Silvia Della Bella, Graham Anderson, Michael D. Ward, Garth Cameron, Sebastian Lunemann, Katharina Kriegsmann, Katarzyna M. Sitnik, Brice Gaudilliere, Chantip Dang-Heine, Marcello Pinti, Paul Klenerman, Frank A. Schildberg, Joana Barros-Martins, Laura G. Rico, Hanlin Zhang, Christian Münz, Thomas Dörner, Jakob Zimmermann, Andrea M. Cooper, Jonni S. Moore, Andreas Diefenbach, Yanling Liu, Wolfgang Bauer, Tobit Steinmetz, Katharina Pracht, Leonard Tan, Peter K. Jani, Alan M. Stall, Petra Hoffmann, Christine S. Falk, Jasmin Knopf, Simon Fillatreau, Hans-Dieter Volk, Luis E. Muñoz, David L. Haviland, William W. Agace, Jonathan Rebhahn, Ljiljana Cvetkovic, Mohamed Trebak, Jordi Petriz, Mario Clerici, Diether J. Recktenwald, Anders Ståhlberg, Tristan Holland, Helen M. McGuire, Sa A. Wang, Christian Kukat, Thomas Kroneis, Laura Cook, Wan Ting Kong, Xin M. Wang, Britta Engelhardt, Pierre Coulie, Genny Del Zotto, Sally A. Quataert, Kata Filkor, Gabriele Multhoff, Bartek Rajwa, Federica Calzetti, Hans Minderman, Cosima T. Baldari, Jens Geginat, Hervé Luche, Gert Van Isterdael, Linda Schadt, Sophia Urbanczyk, Giovanna Borsellino, Liping Yu, Dale I. Godfrey, Achille Anselmo, Rachael C. Walker, Andreas Grützkau, David W. Hedley, Birgit Sawitzki, Silvia Piconese, Maria Yazdanbakhsh, Burkhard Becher, Ramon Bellmas Sanz, Michael Delacher, Hyun-Dong Chang, Immanuel Andrä, Hans-Gustaf Ljunggren, José-Enrique O'Connor, Ahad Khalilnezhad, Sharon Sanderson, Federico Colombo, Götz R. A. Ehrhardt, Inga Sandrock, Enrico Lugli, Christian Bogdan, James B. Wing, Susann Müller, Tomohiro Kurosaki, Derek Davies, Ester B. M. Remmerswaal, Kylie M. Quinn, Christopher A. Hunter, Andreas Radbruch, Timothy P. Bushnell, Anna Erdei, Sabine Adam-Klages, Pascale Eede, Van Duc Dang, Rieke Winkelmann, Thomas Korn, Gemma A. Foulds, Dirk Baumjohann, Matthias Schiemann, Manfred Kopf, Jan Kisielow, Lisa Richter, Jochen Huehn, Gloria Martrus, Alexander Scheffold, Jessica G. Borger, Sidonia B G Eckle, John Bellamy Foster, Anna Katharina Simon, Alicia Wong, Mübeccel Akdis, Gisa Tiegs, Toralf Kaiser, James McCluskey, Anna Vittoria Mattioli, Aaron J. Marshall, Hui-Fern Koay, Eva Orlowski-Oliver, Anja E. Hauser, J. Paul Robinson, Jay K. Kolls, Luca Battistini, Mairi McGrath, Jane L. Grogan, Natalio Garbi, Timothy Tree, Kingston H. G. Mills, Stefan H. E. Kaufmann, Wolfgang Schuh, Ryan R. Brinkman, Tim R. Mosmann, Vincenzo Barnaba, Andreas Dolf, Lorenzo Cosmi, Bo Huang, Andreia C. Lino, Baerbel Keller, René A. W. van Lier, Alexandra J. Corbett, Paul S. Frenette, Pleun Hombrink, Helena Radbruch, Sofie Van Gassen, Olivier Lantz, Lorenzo Moretta, Désirée Kunkel, Kirsten A. Ward-Hartstonge, Armin Saalmüller, Leslie Y. T. Leung, Salvador Vento-Asturias, Paola Lanuti, Alicia Martínez-Romero, Sarah Warth, Zhiyong Poon, Diana Dudziak, Andrea Cossarizza, Kovit Pattanapanyasat, Konrad von Volkmann, Jessica P. Houston, Agnès Lehuen, Andrew Filby, Pratip K. Chattopadhyay, Stefano Casola, Annika Wiedemann, Hannes Stockinger, Jürgen Ruland, Arturo Zychlinsky, Claudia Waskow, Katrin Neumann, Ari Waisman, Lucienne Chatenoud, Sudipto Bari, Kamran Ghoreschi, David W. Galbraith, Yvan Saeys, Hamida Hammad, Andrea Gori, Miguel López-Botet, Gabriel Núñez, Sabine Ivison, Michael Hundemer, Dorothea Reimer, Mark C. Dessing, Günter J. Hämmerling, Rudolf A. Manz, Tomas Kalina, Jonas Hahn, Holden T. Maecker, Hendy Kristyanto, Martin S. Davey, Henning Ulrich, Michael L. Dustin, Takashi Saito, Yousuke Takahama, Milena Nasi, Johanna Huber, Jürgen Wienands, Paolo Dellabona, Andreas Schlitzer, Michael D. Leipold, Kerstin H. Mair, Christian Peth, Immo Prinz, Chiara Romagnani, José M. González-Navajas, Josephine Schlosser, Marina Saresella, Matthias Edinger, Dirk Brenner, Nicole Baumgarth, Rikard Holmdahl, Fang-Ping Huang, Guadalupe Herrera, Malte Paulsen, Gergely Toldi, Luka Cicin-Sain, Reiner Schulte, Christina E. Zielinski, Thomas Winkler, Christoph Goettlinger, Philip E. Boulais, Jennie H M Yang, Antonio Celada, Heike Kunze-Schumacher, Julia Tornack, Florian Ingelfinger, Jenny Mjösberg, Andy Riddell, Leonie Wegener, Thomas Höfer, Christoph Hess, James P. Di Santo, Anna E. Oja, J. Kühne, Willem van de Veen, Mary Bebawy, Alberto Mantovani, Bart Everts, Giovanna Lombardi, Laura Maggi, Anouk von Borstel, Pia Kvistborg, Elisabetta Traggiai, A Ochel, Nima Aghaeepour, Charles-Antoine Dutertre, Matthieu Allez, Thomas Höllt, Wenjun Ouyang, Regina Stark, Maries van den Broek, Shimon Sakaguchi, Paul K. Wallace, Silvano Sozzani, Francesca LaRosa, Annette Oxenius, Malgorzata J. Podolska, Ivana Marventano, Wilhelm Gerner, Oliver F. Wirz, Britta Frehse, Gevitha Ravichandran, Martin Herrmann, Carl S. Goodyear, Gary Warnes, Helen Ferry, Stefan Frischbutter, Tim R. Radstake, Salomé LeibundGut-Landmann, Yi Zhao, Axel Schulz, Angela Santoni, Pablo Engel, Daniela C. Hernández, Andreas Acs, Cristiano Scottà, Francesco Annunziato, Thomas Weisenburger, Wolfgang Beisker, Sue Chow, Fritz Melchers, Daniel E. Speiser, Immanuel Kwok, Florent Ginhoux, Dominic A. Boardman, Natalie Stanley, Carsten Watzl, Marie Follo, Erik Lubberts, Andreas Krueger, Susanne Ziegler, Göran K. Hansson, David Voehringer, Antonia Niedobitek, Eleni Christakou, Lai Guan Ng, Sabine Baumgart, Nicholas A Gherardin, Antonio Cosma, Orla Maguire, Jolene Bradford, Daniel Schraivogel, Linda Quatrini, Stephen D. Miller, Rheumatology, Università degli Studi di Modena e Reggio Emilia (UNIMORE), Deutsches Rheuma-ForschungsZentrum (DRFZ), Deutsches Rheuma-ForschungsZentrum, Swiss Institute of Allergy and Asthma Research (SIAF), Universität Zürich [Zürich] = University of Zurich (UZH), Institut de Recherche Saint-Louis - Hématologie Immunologie Oncologie (Département de recherche de l’UFR de médecine, ex- Institut Universitaire Hématologie-IUH) (IRSL), Université de Paris (UP), Ecotaxie, microenvironnement et développement lymphocytaire (EMily (UMR_S_1160 / U1160)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Department of Internal Medicine, Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI)-DENOTHE Center, Institute of Clinical Molecular Biology, Kiel University, Department of Life Sciences [Siena, Italy], Università degli Studi di Siena = University of Siena (UNISI), Institut Pasteur, Fondation Cenci Bolognetti - Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Réseau International des Instituts Pasteur (RIIP), Dulbecco Telethon Institute/Department of Biology, Caprotec Bioanalytics GmbH, International Occultation Timing Association European Section (IOTA ES), International Occultation Timing Association European Section, European Molecular Biology Laboratory [Heidelberg] (EMBL), VIB-UGent Center for Inflammation Research [Gand, Belgique] (IRC), VIB [Belgium], Fondazione Santa Lucia (IRCCS), Department of Immunology, Chinese Academy of Medical Sciences, FIRC Institute of Molecular Oncology Foundation, IFOM, Istituto FIRC di Oncologia Molecolare (IFOM), Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Department of Physiopatology and Transplantation, University of Milan (DEPT), University of Milan, Monash University [Clayton], Institut des Maladies Emergentes et des Thérapies Innovantes (IMETI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institute of Cellular Pathology, Université Catholique de Louvain = Catholic University of Louvain (UCL), Lymphopoïèse (Lymphopoïèse (UMR_1223 / U1223 / U-Pasteur_4)), Institut Pasteur [Paris]-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Experimental Immunology Unit, Dept. of Oncology, DIBIT San Raffaele Scientific Institute, Immunité Innée - Innate Immunity, Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur [Paris], Charité - UniversitätsMedizin = Charité - University Hospital [Berlin], Department of Biopharmacy [Bruxelles, Belgium] (Institute for Medical Immunology IMI), Université libre de Bruxelles (ULB), Charité Hospital, Humboldt-Universität zu Berlin, Agency for science, technology and research [Singapore] (A*STAR), Laboratory of Molecular Immunology and the Howard Hughes Institute, Rockefeller University [New York], Kennedy Institute of Rheumatology [Oxford, UK], Imperial College London, Theodor Kocher Institute, University of Bern, Leibniz Research Institute for Environmental Medicine [Düsseldorf, Germany] ( IUF), Université Lumière - Lyon 2 (UL2), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), University of Edinburgh, Integrative Biology Program [Milano], Istituto Nazionale Genetica Molecolare [Milano] (INGM), Singapore Immunology Network (SIgN), Biomedical Sciences Institute (BMSI), Universitat de Barcelona (UB), Rheumatologie, Cell Biology, Department of medicine [Stockholm], Karolinska Institutet [Stockholm]-Karolinska University Hospital [Stockholm], Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Delft University of Technology (TU Delft), Medical Inflammation Research, Karolinska Institutet [Stockholm], Department of Photonics Engineering [Lyngby], Technical University of Denmark [Lyngby] (DTU), Dpt of Experimental Immunology [Braunschweig], Helmholtz Centre for Infection Research (HZI), Department of Internal Medicine V, Universität Heidelberg [Heidelberg], Department of Histology and Embryology, University of Rijeka, Freiburg University Medical Center, Nuffield Dept of Clinical Medicine, University of Oxford [Oxford]-NIHR Biomedical Research Centre, Institute of Integrative Biology, Molecular Biomedicine, Berlin Institute of Health (BIH), Laboratory for Lymphocyte Differentiation, RIKEN Research Center, Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, Immunité et cancer (U932), Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Department of Surgery [Vancouver, BC, Canada] (Child and Family Research Institute), University of British Columbia (UBC)-Child and Family Research Institute [Vancouver, BC, Canada], College of Food Science and Technology [Shangai], Shanghai Ocean University, Institute for Medical Microbiology and Hygiene, University of Marburg, King‘s College London, Erasmus University Medical Center [Rotterdam] (Erasmus MC), Centre d'Immunophénomique (CIPHE), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Brustzentrum Kantonsspital St. Gallen, Immunotechnology Section, Vaccine Research Center, National Institutes of Health [Bethesda] (NIH)-National Institute of Allergy and Infectious Diseases, Heinrich Pette Institute [Hamburg], Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Department of Immunology and Cell Biology, Mario Negri Institute, Laboratory of Molecular Medicine and Biotechnology, Don C. Gnocchi ONLUS Foundation, Institute of Translational Medicine, Klinik für Dermatologie, Venerologie und Allergologie, School of Biochemistry and Immunology, Department of Medicine Huddinge, Karolinska Institutet [Stockholm]-Karolinska University Hospital [Stockholm]-Lipid Laboratory, Università di Genova, Dipartimento di Medicina Sperimentale, Department of Environmental Microbiology, Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ), Department of Radiation Oncology [Munich], Ludwig-Maximilians-Universität München (LMU), Centre de Recherche Publique- Santé, Université du Luxembourg (Uni.lu), William Harvey Research Institute, Barts and the London Medical School, University of Michigan [Ann Arbor], University of Michigan System, Centro de Investigacion del Cancer (CSIC), Universitario de Salamanca, Molecular Pathology [Tartu, Estonia], University of Tartu, Hannover Medical School [Hannover] (MHH), Centre d'Immunologie de Marseille - Luminy (CIML), Monash Biomedicine Discovery Institute, Cytometry Laboratories and School of Veterinary Medicine, Purdue University [West Lafayette], Data Mining and Modelling for Biomedicine [Ghent, Belgium], VIB Center for Inflammation Research [Ghent, Belgium], Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, RIKEN Research Center for Allergy and Immunology, Osaka University [Osaka], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), Institute of Medical Immunology [Berlin, Germany], FACS and Array Core Facility, Johannes Gutenberg - Universität Mainz (JGU), Otto-von-Guericke University [Magdeburg] (OVGU), SUPA School of Physics and Astronomy [University of St Andrews], University of St Andrews [Scotland]-Scottish Universities Physics Alliance (SUPA), Biologie Cellulaire des Lymphocytes - Lymphocyte Cell Biology, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), General Pathology and Immunology (GPI), University of Brescia, Université de Lausanne (UNIL), Terry Fox Laboratory, BC Cancer Agency (BCCRC)-British Columbia Cancer Agency Research Centre, Department of Molecular Immunology, Medizinische Universität Wien = Medical University of Vienna, Dept. Pediatric Cardiology, Universität Leipzig [Leipzig], Universitaetsklinikum Hamburg-Eppendorf = University Medical Center Hamburg-Eppendorf [Hamburg] (UKE), Center for Cardiovascular Sciences, Albany Medical College, Dept Pathol, Div Immunol, University of Cambridge [UK] (CAM), Department of Information Technology [Gent], Universiteit Gent, Department of Plant Systems Biology, Department of Plant Biotechnology and Genetics, Universiteit Gent = Ghent University [Belgium] (UGENT), Division of Molecular Immunology, Institute for Immunology, Department of Geological Sciences, University of Oregon [Eugene], Centers for Disease Control and Prevention [Atlanta] (CDC), Centers for Disease Control and Prevention, University of Colorado [Colorado Springs] (UCCS), FACS laboratory, Cancer Research, London, Cancer Research UK, Regeneration in Hematopoiesis and Animal Models of Hematopoiesis, Faculty of Medicine, Dresden University of Technology, Barbara Davis Center for Childhood Diabetes (BDC), University of Colorado Anschutz [Aurora], School of Computer and Electronic Information [Guangxi University], Guangxi University [Nanning], School of Materials Science and Engineering, Nanyang Technological University [Singapour], Max Planck Institute for Infection Biology (MPIIB), Max-Planck-Gesellschaft, Work in the laboratory of Dieter Adam is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Projektnummer 125440785 – SFB 877, Project B2.Petra Hoffmann, Andrea Hauser, and Matthias Edinger thank BD Biosciences®, San José, CA, USA, and SKAN AG, Bale, Switzerland for fruitful cooperation during the development, construction, and installation of the GMP‐compliant cell sorting equipment and the Bavarian Immune Therapy Network (BayImmuNet) for financial support.Edwin van der Pol and Paola Lanuti acknowledge Aleksandra Gąsecka M.D. for excellent experimental support and Dr. Rienk Nieuwland for textual suggestions. This work was supported by the Netherlands Organisation for Scientific Research – Domain Applied and Engineering Sciences (NWO‐TTW), research program VENI 15924.Jessica G Borger, Kylie M Quinn, Mairi McGrath, and Regina Stark thank Francesco Siracusa and Patrick Maschmeyer for providing data.Larissa Nogueira Almeida was supported by DFG research grant MA 2273/14‐1. Rudolf A. Manz was supported by the Excellence Cluster 'Inflammation at Interfaces' (EXC 306/2).Susanne Hartmann and Friederike Ebner were supported by the German Research Foundation (GRK 2046).Hans Minderman was supported by NIH R50CA211108.This work was funded by the Deutsche Forschungsgemeinschaft through the grant TRR130 (project P11 and C03) to Thomas H. Winkler.Ramon Bellmàs Sanz, Jenny Kühne, and Christine S. Falk thank Jana Keil and Kerstin Daemen for excellent technical support. The work was funded by the Germany Research Foundation CRC738/B3 (CSF).The work by the Mei laboratory was supported by German Research Foundation Grant ME 3644/5‐1 and TRR130 TP24, the German Rheumatism Research Centre Berlin, European Union Innovative Medicines Initiative ‐ Joint Undertaking ‐ RTCure Grant Agreement 777357, the Else Kröner‐Fresenius‐Foundation, German Federal Ministry of Education and Research e:Med sysINFLAME Program Grant 01ZX1306B and KMU‐innovativ 'InnoCyt', and the Leibniz Science Campus for Chronic Inflammation (http://www.chronische-entzuendung.org).Axel Ronald Schulz, Antonio Cosma, Sabine Baumgart, Brice Gaudilliere, Helen M. McGuire, and Henrik E. Mei thank Michael D. Leipold for critically reading the manuscript.Christian Kukat acknowledges support from the ISAC SRL Emerging Leaders program.John Trowsdale received funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (Grant Agreement 695551)., European Project: 7728036(1978), Università degli Studi di Modena e Reggio Emilia = University of Modena and Reggio Emilia (UNIMORE), Université Paris Cité (UPCité), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Università degli Studi di Firenze = University of Florence (UniFI)-DENOTHE Center, Università degli Studi di Milano = University of Milan (UNIMI), Institut Pasteur [Paris] (IP)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Humboldt University Of Berlin, Leibniz Research Institute for Environmental Medicine [Düsseldorf, Germany] (IUF), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Universität Heidelberg [Heidelberg] = Heidelberg University, Universitäts Klinikum Freiburg = University Medical Center Freiburg (Uniklinik), University of Oxford-NIHR Biomedical Research Centre, Universität Bonn = University of Bonn, Università degli Studi di Firenze = University of Florence (UniFI), Università degli studi di Genova = University of Genoa (UniGe), Universidad de Salamanca, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU), Otto-von-Guericke-Universität Magdeburg = Otto-von-Guericke University [Magdeburg] (OVGU), Université de Lausanne = University of Lausanne (UNIL), Universität Leipzig, Universiteit Gent = Ghent University (UGENT), HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany., Cossarizza, A., Chang, H. -D., Radbruch, A., Acs, A., Adam, D., Adam-Klages, S., Agace, W. W., Aghaeepour, N., Akdis, M., Allez, M., Almeida, L. N., Alvisi, G., Anderson, G., Andra, I., Annunziato, F., Anselmo, A., Bacher, P., Baldari, C. T., Bari, S., Barnaba, V., Barros-Martins, J., Battistini, L., Bauer, W., Baumgart, S., Baumgarth, N., Baumjohann, D., Baying, B., Bebawy, M., Becher, B., Beisker, W., Benes, V., Beyaert, R., Blanco, A., Boardman, D. A., Bogdan, C., Borger, J. G., Borsellino, G., Boulais, P. E., Bradford, J. A., Brenner, D., Brinkman, R. R., Brooks, A. E. S., Busch, D. H., Buscher, M., Bushnell, T. P., Calzetti, F., Cameron, G., Cammarata, I., Cao, X., Cardell, S. L., Casola, S., Cassatella, M. A., Cavani, A., Celada, A., Chatenoud, L., Chattopadhyay, P. K., Chow, S., Christakou, E., Cicin-Sain, L., Clerici, M., Colombo, F. S., Cook, L., Cooke, A., Cooper, A. M., Corbett, A. J., Cosma, A., Cosmi, L., Coulie, P. G., Cumano, A., Cvetkovic, L., Dang, V. D., Dang-Heine, C., Davey, M. S., Davies, D., De Biasi, S., Del Zotto, G., Dela Cruz, G. V., Delacher, M., Della Bella, S., Dellabona, P., Deniz, G., Dessing, M., Di Santo, J. P., Diefenbach, A., Dieli, F., Dolf, A., Dorner, T., Dress, R. J., Dudziak, D., Dustin, M., Dutertre, C. -A., Ebner, F., Eckle, S. B. G., Edinger, M., Eede, P., Ehrhardt, G. R. A., Eich, M., Engel, P., Engelhardt, B., Erdei, A., Esser, C., Everts, B., Evrard, M., Falk, C. S., Fehniger, T. A., Felipo-Benavent, M., Ferry, H., Feuerer, M., Filby, A., Filkor, K., Fillatreau, S., Follo, M., Forster, I., Foster, J., Foulds, G. A., Frehse, B., Frenette, P. S., Frischbutter, S., Fritzsche, W., Galbraith, D. W., Gangaev, A., Garbi, N., Gaudilliere, B., Gazzinelli, R. T., Geginat, J., Gerner, W., Gherardin, N. A., Ghoreschi, K., Gibellini, L., Ginhoux, F., Goda, K., Godfrey, D. I., Goettlinger, C., Gonzalez-Navajas, J. M., Goodyear, C. S., Gori, A., Grogan, J. L., Grummitt, D., Grutzkau, A., Haftmann, C., Hahn, J., Hammad, H., Hammerling, G., Hansmann, L., Hansson, G., Harpur, C. M., Hartmann, S., Hauser, A., Hauser, A. E., Haviland, D. L., Hedley, D., Hernandez, D. C., Herrera, G., Herrmann, M., Hess, C., Hofer, T., Hoffmann, P., Hogquist, K., Holland, T., Hollt, T., Holmdahl, R., Hombrink, P., Houston, J. P., Hoyer, B. F., Huang, B., Huang, F. -P., Huber, J. E., Huehn, J., Hundemer, M., Hunter, C. A., Hwang, W. Y. K., Iannone, A., Ingelfinger, F., Ivison, S. M., Jack, H. -M., Jani, P. K., Javega, B., Jonjic, S., Kaiser, T., Kalina, T., Kamradt, T., Kaufmann, S. H. E., Keller, B., Ketelaars, S. L. C., Khalilnezhad, A., Khan, S., Kisielow, J., Klenerman, P., Knopf, J., Koay, H. -F., Kobow, K., Kolls, J. K., Kong, W. T., Kopf, M., Korn, T., Kriegsmann, K., Kristyanto, H., Kroneis, T., Krueger, A., Kuhne, J., Kukat, C., Kunkel, D., Kunze-Schumacher, H., Kurosaki, T., Kurts, C., Kvistborg, P., Kwok, I., Landry, J., Lantz, O., Lanuti, P., Larosa, F., Lehuen, A., LeibundGut-Landmann, S., Leipold, M. D., Leung, L. Y. T., Levings, M. K., Lino, A. C., Liotta, F., Litwin, V., Liu, Y., Ljunggren, H. -G., Lohoff, M., Lombardi, G., Lopez, L., Lopez-Botet, M., Lovett-Racke, A. E., Lubberts, E., Luche, H., Ludewig, B., Lugli, E., Lunemann, S., Maecker, H. T., Maggi, L., Maguire, O., Mair, F., Mair, K. H., Mantovani, A., Manz, R. A., Marshall, A. J., Martinez-Romero, A., Martrus, G., Marventano, I., Maslinski, W., Matarese, G., Mattioli, A. V., Maueroder, C., Mazzoni, A., Mccluskey, J., Mcgrath, M., Mcguire, H. M., Mcinnes, I. B., Mei, H. E., Melchers, F., Melzer, S., Mielenz, D., Miller, S. D., Mills, K. H. G., Minderman, H., Mjosberg, J., Moore, J., Moran, B., Moretta, L., Mosmann, T. R., Muller, S., Multhoff, G., Munoz, L. E., Munz, C., Nakayama, T., Nasi, M., Neumann, K., Ng, L. G., Niedobitek, A., Nourshargh, S., Nunez, G., O'Connor, J. -E., Ochel, A., Oja, A., Ordonez, D., Orfao, A., Orlowski-Oliver, E., Ouyang, W., Oxenius, A., Palankar, R., Panse, I., Pattanapanyasat, K., Paulsen, M., Pavlinic, D., Penter, L., Peterson, P., Peth, C., Petriz, J., Piancone, F., Pickl, W. F., Piconese, S., Pinti, M., Pockley, A. G., Podolska, M. J., Poon, Z., Pracht, K., Prinz, I., Pucillo, C. E. M., Quataert, S. A., Quatrini, L., Quinn, K. M., Radbruch, H., Radstake, T. R. D. J., Rahmig, S., Rahn, H. -P., Rajwa, B., Ravichandran, G., Raz, Y., Rebhahn, J. A., Recktenwald, D., Reimer, D., Reis e Sousa, C., Remmerswaal, E. B. M., Richter, L., Rico, L. G., Riddell, A., Rieger, A. M., Robinson, J. P., Romagnani, C., Rubartelli, A., Ruland, J., Saalmuller, A., Saeys, Y., Saito, T., Sakaguchi, S., Sala-de-Oyanguren, F., Samstag, Y., Sanderson, S., Sandrock, I., Santoni, A., Sanz, R. B., Saresella, M., Sautes-Fridman, C., Sawitzki, B., Schadt, L., Scheffold, A., Scherer, H. U., Schiemann, M., Schildberg, F. A., Schimisky, E., Schlitzer, A., Schlosser, J., Schmid, S., Schmitt, S., Schober, K., Schraivogel, D., Schuh, W., Schuler, T., Schulte, R., Schulz, A. R., Schulz, S. R., Scotta, C., Scott-Algara, D., Sester, D. P., Shankey, T. V., Silva-Santos, B., Simon, A. K., Sitnik, K. M., Sozzani, S., Speiser, D. E., Spidlen, J., Stahlberg, A., Stall, A. M., Stanley, N., Stark, R., Stehle, C., Steinmetz, T., Stockinger, H., Takahama, Y., Takeda, K., Tan, L., Tarnok, A., Tiegs, G., Toldi, G., Tornack, J., Traggiai, E., Trebak, M., Tree, T. I. M., Trotter, J., Trowsdale, J., Tsoumakidou, M., Ulrich, H., Urbanczyk, S., van de Veen, W., van den Broek, M., van der Pol, E., Van Gassen, S., Van Isterdael, G., van Lier, R. A. W., Veldhoen, M., Vento-Asturias, S., Vieira, P., Voehringer, D., Volk, H. -D., von Borstel, A., von Volkmann, K., Waisman, A., Walker, R. V., Wallace, P. K., Wang, S. A., Wang, X. M., Ward, M. D., Ward-Hartstonge, K. A., Warnatz, K., Warnes, G., Warth, S., Waskow, C., Watson, J. V., Watzl, C., Wegener, L., Weisenburger, T., Wiedemann, A., Wienands, J., Wilharm, A., Wilkinson, R. J., Willimsky, G., Wing, J. B., Winkelmann, R., Winkler, T. H., Wirz, O. F., Wong, A., Wurst, P., Yang, J. H. M., Yang, J., Yazdanbakhsh, M., Yu, L., Yue, A., Zhang, H., Zhao, Y., Ziegler, S. M., Zielinski, C., Zimmermann, J., Zychlinsky, A., UCL - SSS/DDUV - Institut de Duve, UCL - SSS/DDUV/GECE - Génétique cellulaire, Netherlands Organization for Scientific Research, German Research Foundation, European Commission, European Research Council, Repositório da Universidade de Lisboa, CCA - Imaging and biomarkers, Experimental Immunology, AII - Infectious diseases, AII - Inflammatory diseases, Biomedical Engineering and Physics, ACS - Atherosclerosis & ischemic syndromes, and Landsteiner Laboratory
- Subjects
0301 basic medicine ,Consensus ,Immunology ,Consensu ,Cell Separation ,Biology ,Article ,Flow cytometry ,03 medical and health sciences ,0302 clinical medicine ,Guidelines ,Allergy and Immunology ,medicine ,Cell separation ,Immunology and Allergy ,Humans ,guidelines ,flow cytometry ,immunology ,medicine.diagnostic_test ,BIOMEDICINE AND HEALTHCARE. Basic Medical Sciences ,Cell sorting ,Flow Cytometry ,Cell selection ,Data science ,3. Good health ,030104 developmental biology ,Phenotype ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,BIOMEDICINA I ZDRAVSTVO. Temeljne medicinske znanosti ,030215 immunology ,Human - Abstract
All authors: Andrea Cossarizza Hyun‐Dong Chang Andreas Radbruch Andreas Acs Dieter Adam Sabine Adam‐Klages William W. Agace Nima Aghaeepour Mübeccel Akdis Matthieu Allez Larissa Nogueira Almeida Giorgia Alvisi Graham Anderson Immanuel Andrä Francesco Annunziato Achille Anselmo Petra Bacher Cosima T. Baldari Sudipto Bari Vincenzo Barnaba Joana Barros‐Martins Luca Battistini Wolfgang Bauer Sabine Baumgart Nicole Baumgarth Dirk Baumjohann Bianka Baying Mary Bebawy Burkhard Becher Wolfgang Beisker Vladimir Benes Rudi Beyaert Alfonso Blanco Dominic A. Boardman Christian Bogdan Jessica G. Borger Giovanna Borsellino Philip E. Boulais Jolene A. Bradford Dirk Brenner Ryan R. Brinkman Anna E. S. Brooks Dirk H. Busch Martin Büscher Timothy P. Bushnell Federica Calzetti Garth Cameron Ilenia Cammarata Xuetao Cao Susanna L. Cardell Stefano Casola Marco A. Cassatella Andrea Cavani Antonio Celada Lucienne Chatenoud Pratip K. Chattopadhyay Sue Chow Eleni Christakou Luka Čičin‐Šain Mario Clerici Federico S. Colombo Laura Cook Anne Cooke Andrea M. Cooper Alexandra J. Corbett Antonio Cosma Lorenzo Cosmi Pierre G. Coulie Ana Cumano Ljiljana Cvetkovic Van Duc Dang Chantip Dang‐Heine Martin S. Davey Derek Davies Sara De Biasi Genny Del Zotto Gelo Victoriano Dela Cruz Michael Delacher Silvia Della Bella Paolo Dellabona Günnur Deniz Mark Dessing James P. Di Santo Andreas Diefenbach Francesco Dieli Andreas Dolf Thomas Dörner Regine J. Dress Diana Dudziak Michael Dustin Charles‐Antoine Dutertre Friederike Ebner Sidonia B. G. Eckle Matthias Edinger Pascale Eede Götz R.A. Ehrhardt Marcus Eich Pablo Engel Britta Engelhardt Anna Erdei Charlotte Esser Bart Everts Maximilien Evrard Christine S. Falk Todd A. Fehniger Mar Felipo‐Benavent Helen Ferry Markus Feuerer Andrew Filby Kata Filkor Simon Fillatreau Marie Follo Irmgard Förster John Foster Gemma A. Foulds Britta Frehse Paul S. Frenette Stefan Frischbutter Wolfgang Fritzsche David W. Galbraith Anastasia Gangaev Natalio Garbi Brice Gaudilliere Ricardo T. Gazzinelli Jens Geginat Wilhelm Gerner Nicholas A. Gherardin Kamran Ghoreschi Lara Gibellini Florent Ginhoux Keisuke Goda Dale I. Godfrey Christoph Goettlinger Jose M. González‐Navajas Carl S. Goodyear Andrea Gori Jane L. Grogan Daryl Grummitt Andreas Grützkau Claudia Haftmann Jonas Hahn Hamida Hammad Günter Hämmerling Leo Hansmann Goran Hansson Christopher M. Harpur Susanne Hartmann Andrea Hauser Anja E. Hauser David L. Haviland David Hedley Daniela C. Hernández Guadalupe Herrera Martin Herrmann Christoph Hess Thomas Höfer Petra Hoffmann Kristin Hogquist Tristan Holland Thomas Höllt Rikard Holmdahl Pleun Hombrink Jessica P. Houston Bimba F. Hoyer Bo Huang Fang‐Ping Huang Johanna E. Huber Jochen Huehn Michael Hundemer Christopher A. Hunter William Y. K. Hwang Anna Iannone Florian Ingelfinger Sabine M Ivison Hans‐Martin Jäck Peter K. Jani Beatriz Jávega Stipan Jonjic Toralf Kaiser Tomas Kalina Thomas Kamradt Stefan H. E. Kaufmann Baerbel Keller Steven L. C. Ketelaars Ahad Khalilnezhad Srijit Khan Jan Kisielow Paul Klenerman Jasmin Knopf Hui‐Fern Koay Katja Kobow Jay K. Kolls Wan Ting Kong Manfred Kopf Thomas Korn Katharina Kriegsmann Hendy Kristyanto Thomas Kroneis Andreas Krueger Jenny Kühne Christian Kukat Désirée Kunkel Heike Kunze‐Schumacher Tomohiro Kurosaki Christian Kurts Pia Kvistborg Immanuel Kwok Jonathan Landry Olivier Lantz Paola Lanuti Francesca LaRosa Agnès Lehuen Salomé LeibundGut‐Landmann Michael D. Leipold Leslie Y.T. Leung Megan K. Levings Andreia C. Lino Francesco Liotta Virginia Litwin Yanling Liu Hans‐Gustaf Ljunggren Michael Lohoff Giovanna Lombardi Lilly Lopez Miguel López‐Botet Amy E. Lovett‐Racke Erik Lubberts Herve Luche Burkhard Ludewig Enrico Lugli Sebastian Lunemann Holden T. Maecker Laura Maggi Orla Maguire Florian Mair Kerstin H. Mair Alberto Mantovani Rudolf A. Manz Aaron J. Marshall Alicia Martínez‐Romero Glòria Martrus Ivana Marventano Wlodzimierz Maslinski Giuseppe Matarese Anna Vittoria Mattioli Christian Maueröder Alessio Mazzoni James McCluskey Mairi McGrath Helen M. McGuire Iain B. McInnes Henrik E. Mei Fritz Melchers Susanne Melzer Dirk Mielenz Stephen D. Miller Kingston H.G. Mills Hans Minderman Jenny Mjösberg Jonni Moore Barry Moran Lorenzo Moretta Tim R. Mosmann Susann Müller Gabriele Multhoff Luis Enrique Muñoz Christian Münz Toshinori Nakayama Milena Nasi Katrin Neumann Lai Guan Ng Antonia Niedobitek Sussan Nourshargh Gabriel Núñez José‐Enrique O'Connor Aaron Ochel Anna Oja Diana Ordonez Alberto Orfao Eva Orlowski‐Oliver Wenjun Ouyang Annette Oxenius Raghavendra Palankar Isabel Panse Kovit Pattanapanyasat Malte Paulsen Dinko Pavlinic Livius Penter Pärt Peterson Christian Peth Jordi Petriz Federica Piancone Winfried F. Pickl Silvia Piconese Marcello Pinti A. Graham Pockley Malgorzata Justyna Podolska Zhiyong Poon Katharina Pracht Immo Prinz Carlo E. M. Pucillo Sally A. Quataert Linda Quatrini Kylie M. Quinn Helena Radbruch Tim R. D. J. Radstake Susann Rahmig Hans‐Peter Rahn Bartek Rajwa Gevitha Ravichandran Yotam Raz Jonathan A. Rebhahn Diether Recktenwald Dorothea Reimer Caetano Reis e Sousa Ester B.M. Remmerswaal Lisa Richter Laura G. Rico Andy Riddell Aja M. Rieger J. Paul Robinson Chiara Romagnani Anna Rubartelli Jürgen Ruland Armin Saalmüller Yvan Saeys Takashi Saito Shimon Sakaguchi Francisco Sala‐de‐Oyanguren Yvonne Samstag Sharon Sanderson Inga Sandrock Angela Santoni Ramon Bellmàs Sanz Marina Saresella Catherine Sautes‐Fridman Birgit Sawitzki Linda Schadt Alexander Scheffold Hans U. Scherer Matthias Schiemann Frank A. Schildberg Esther Schimisky Andreas Schlitzer Josephine Schlosser Stephan Schmid Steffen Schmitt Kilian Schober Daniel Schraivogel Wolfgang Schuh Thomas Schüler Reiner Schulte Axel Ronald Schulz Sebastian R. Schulz Cristiano Scottá Daniel Scott‐Algara David P. Sester T. Vincent Shankey Bruno Silva‐Santos Anna Katharina Simon Katarzyna M. Sitnik Silvano Sozzani Daniel E. Speiser Josef Spidlen Anders Stahlberg Alan M. Stall Natalie Stanley Regina Stark Christina Stehle Tobit Steinmetz Hannes Stockinger Yousuke Takahama Kiyoshi Takeda Leonard Tan Attila Tárnok Gisa Tiegs Gergely Toldi Julia Tornack Elisabetta Traggiai Mohamed Trebak Timothy I.M. Tree Joe Trotter John Trowsdale Maria Tsoumakidou Henning Ulrich Sophia Urbanczyk Willem van de Veen Maries van den Broek Edwin van der Pol Sofie Van Gassen Gert Van Isterdael René A.W. van Lier Marc Veldhoen Salvador Vento‐Asturias Paulo Vieira David Voehringer Hans‐Dieter Volk Anouk von Borstel Konrad von Volkmann Ari Waisman Rachael V. Walker Paul K. Wallace Sa A. Wang Xin M. Wang Michael D. Ward Kirsten A Ward‐Hartstonge Klaus Warnatz Gary Warnes Sarah Warth Claudia Waskow James V. Watson Carsten Watzl Leonie Wegener Thomas Weisenburger Annika Wiedemann Jürgen Wienands Anneke Wilharm Robert John Wilkinson Gerald Willimsky James B. Wing Rieke Winkelmann Thomas H. Winkler Oliver F. Wirz Alicia Wong Peter Wurst Jennie H. M. Yang Juhao Yang Maria Yazdanbakhsh Liping Yu Alice Yue Hanlin Zhang Yi Zhao Susanne Maria Ziegler Christina Zielinski Jakob Zimmermann Arturo Zychlinsky., These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer‐reviewed by leading experts in the field, making this an essential research companion., This work was supported by the Netherlands Organisation for Scientific Research – Domain Applied and Engineering Sciences (NWO-TTW), research program VENI 15924. This work was funded by the Deutsche Forschungsgemeinschaft. European Union Innovative Medicines Initiative - Joint Undertaking - RTCure Grant Agreement 777357 and innovation program (Grant Agreement 695551).
- Published
- 2019
- Full Text
- View/download PDF
44. CD8+ T Cells Orchestrate pDC-XCR1+ Dendritic Cell Spatial and Functional Cooperativity to Optimize Priming
- Author
-
Anna Brewitz, Sarah Eickhoff, Richard A. Kroczek, Sabrina Dähling, Frederick Klauschen, Marco Colonna, Ronald N. Germain, Tsuneyasu Kaisho, Winfried Barchet, Natalio Garbi, Matteo Iannacone, Waldemar Kolanus, Thomas Quast, Sammy Bedoui, Christian Kurts, Wolfgang Kastenmüller, Brewitz, A, Eickhoff, S, Dahling, S, Quast, T, Bedoui, S, Kroczek, Ra, Kurts, C, Garbi, N, Barchet, W, Iannacone, M, Klauschen, F, Kolanus, W, Kaisho, T, Colonna, M, Germain, Rn, and Kastenmuller, W
- Subjects
0301 basic medicine ,Chemokine ,Cellular immunity ,XCR1 ,Immunology ,Fluorescent Antibody Technique ,Priming (immunology) ,Enzyme-Linked Immunosorbent Assay ,Mice, Transgenic ,CD8-Positive T-Lymphocytes ,Lymphocyte Activation ,Article ,Mice ,03 medical and health sciences ,Cross-Priming ,0302 clinical medicine ,Immune system ,Animals ,Immunology and Allergy ,Cytotoxic T cell ,Antigens ,biology ,hemic and immune systems ,Dendritic Cells ,Dendritic cell ,Flow Cytometry ,Cell biology ,Chemotaxis, Leukocyte ,030104 developmental biology ,Infectious Diseases ,biology.protein ,Chemokines ,030215 immunology ,XCL1 - Abstract
Adaptive cellular immunity is initiated by antigenspecific interactions between T lymphocytes and dendritic cells (DCs). Plasmacytoid DCs (pDCs) support antiviral immunity by linking innate and adaptive immune responses. Here we examined pDC spatiotemporal dynamics during viral infection to uncover when, where, and how they exert their functions. We found that pDCs accumulated at sites of CD8(+) T cell antigen-driven activation in a CCR5-dependent fashion. Furthermore, activated CD8(+) T cells orchestrated the local recruitment of lymph node-resident XCR1 chemokine receptor-expressing DCs via secretion of the XCL1 chemokine. Functionally, this CD8+ T cell-mediated reorganization of the local DC network allowed for the interaction and cooperation of pDCs and XCR1(+) DCs, thereby optimizing XCR1(+) DC maturation and cross-presentation. These data support a model in which CD8(+) T cells upon activation create their own optimal priming microenvironment by recruiting additional DC subsets to the site of initial antigen recognition.
- Published
- 2017
- Full Text
- View/download PDF
45. Guidelines for the use of flow cytometry and cell sorting in immunological studies
- Author
-
Guadalupe Herrera, Jens Geginat, Daryl Grummitt, Vincenzo Barnaba, Joanne Lannigan, Beate Rückert, Elisabetta Traggiai, Christian Münz, Susanne Melzer, Ari Waisman, Pratip K. Chattopadhyay, Jonas Hahn, T. Vincent Shankey, S Schmid, Julia Tornack, David W. Hedley, Paolo Dellabona, Jürgen Wienands, Ana Cumano, Ester B. M. Remmerswaal, Christopher A. Hunter, Van Duc Dang, Anis Larbi, Timothy P. Bushnell, Mor Gross, Wenjun Ouyang, Vera S. Donnenberg, Lilly Lopez, Holden T. Maecker, Jenny Mjösberg, Christina Stehle, Yanling Liu, Alan M. Stall, Anja E. Hauser, Yousuke Takahama, Mark C. Dessing, Gergely Toldi, Klaus Warnatz, Raghav Palankar, Sussan Nourshargh, Enrico Lugli, Bimba F. Hoyer, Pleun Hombrink, Bartek Rajwa, Sarah Warth, Isabel Panse, Rachael C. Walker, Silvia Piconese, Andrew Filby, Pärt Peterson, Kilian Schober, Silvia Della Bella, Leonie Wegener, Merle Stein, Anne Cooke, Alessandro Moretta, Deborah Kienhöfer, Andrea Cossarizza, Hyun-Dong Chang, Konrad von Volkmann, Jessica P. Houston, Mübeccel Akdis, Andreas Grützkau, Tristan Holland, Jakob Zimmermann, Jonni S. Moore, Dirk Mielenz, Iain B. McInnes, Bo Huang, Paulo Vieira, Thomas Kroneis, Tobit Steinmetz, Kerstin Juelke, Sharon Sanderson, James V. Watson, Srijit Khan, Sally A. Quataert, Winfried F. Pickl, Annika Wiedemann, Sara De Biasi, Andreas Radbruch, James B. Wing, Susann Müller, Ton N. Schumacher, Katy Rezvani, Gloria Martrus, Alexander Scheffold, Toralf Kaiser, Carlo Pucillo, Lara Gibellini, Anna Rubartelli, Qingyu Cheng, Luca Battistini, David Mirrer, David W. Galbraith, Giovanna Borsellino, Ryan R. Brinkman, Tim R. Mosmann, Laura G. Rico, Anita Dreher, Désirée Kunkel, Francesco Annunziato, Pia Kvistborg, Andrea Gori, Chiara Romagnani, Anat Shemer, Toshinori Nakayama, Francisco Sala-de-Oyanguren, Attila Tárnok, Alfonso Blanco, Anna Iannone, Giuseppe Matarese, Thomas Dörner, Virginia Litwin, Michael Lohoff, Petra Bacher, Jordi Petriz, Lorenzo Moretta, Götz R. A. Ehrhardt, Qianjun Zhang, Andrea Cavani, Barry Moran, Christian Maueröder, Immanuel Andrä, Dirk H. Busch, Joe Trotter, Timothy R D J Radstake, Stipan Jonjić, Fritz Melchers, Hans-Martin Jäck, Beatriz Jávega, Gerald Willimsky, Martin Büscher, Henrik E. Mei, Christine S. Falk, Zhigang Tian, Martin Herrmann, Alice Yue, Steffen Jung, Bart Everts, Frank A. Schildberg, John Bellamy Foster, Giovanna Lombardi, Milena Nasi, John P. Nolan, Todd A. Fehniger, Francesco Dieli, Steffen Schmitt, Andreas Dolf, A. Graham Pockley, Claudia Berek, Josef Spidlen, Megan K. Levings, Werner Müller, Baerbel Keller, René A. W. van Lier, Daisy Philips, Susanne Ziegler, Christian Kurts, Malgorzata J. Podolska, Jürgen Ruland, David Voehringer, Kenneth M. Murphy, Marlous van der Braber, Maria Dolores García-Godoy, Sabine Baumgart, Yi Zhao, Antonio Cosma, Falk Hiepe, Charlotte Esser, Pablo Engel, Marcello Veldhoen, Irmgard Förster, Amy E. Lovett-Racke, Günnur Deniz, Burkhard Ludewig, Esther Schimisky, Cristiano Scottà, Marcello Pinti, Jonathan Rebhahn, Regina Stark, Mario Clerici, Liping Yu, Shimon Sakaguchi, Derek Davies, Anna Katharina Simon, Lorenzo Cosmi, Gabriele Multhoff, Kamran Ghoreschi, Quirin Hammer, Henning Ulrich, J. Paul Robinson, Yvonne Samstag, Olivier Lantz, Hannes Stockinger, Xuetao Cao, Simon Fillatreau, David L. Haviland, Natalio Garbi, C. Neudörfl, Kingston H. G. Mills, Salvador Vento-Asturias, Christian Peth, Philip E. Boulais, Diether J. Recktenwald, Burkhard Becher, Tomas Kalina, Michael D. Leipold, Christoph Goettlinger, Gemma A. Foulds, Jane L. Grogan, Axel R. Schulz, James P. Di Santo, Matthias Schiemann, Michael D. Ward, Britta Engelhardt, Birgit Sawitzki, Annette Oxenius, Carl S. Goodyear, Salomé LeibundGut-Landmann, Wolfgang Beisker, Sue Chow, Carsten Watzl, Marie Follo, Erik Lubberts, Peter Wurst, Thomas Schüler, Andreas Diefenbach, Wolfgang Bauer, Hans-Dieter Volk, Luis E. Muñoz, Elmar Endl, Genny Del Zotto, José-Enrique O'Connor, Mairi McGrath, Paul S. Frenette, Dipartimento di Scienze Biomediche, Università degli Studi di Modena e Reggio Emilia (UNIMORE), Cell Biology, Klinik für Dermatologie, Venerologie und Allergologie, Department of Internal Medicine, Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI)-DENOTHE Center, Neuroimmunology Unit, Santa Lucia Foundation (IRCCS), Inorganic Chemistry II, Universität Bayreuth, Caprotec Bioanalytics GmbH, International Occultation Timing Association European Section (IOTA ES), International Occultation Timing Association European Section, Institut der Leibniz-Gemeinschaft, Berlin, Fondazione Santa Lucia (IRCCS), Terry Fox Laboratory, BC Cancer Agency (BCCRC)-British Columbia Cancer Agency Research Centre, Department of Immunology, Chinese Academy of Medical Sciences, Fondazione Don Carlo Gnocchi, Immunologie des Maladies Virales et Autoimmunes (IMVA - U1184), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Experimental Immunology Unit, Dept. of Oncology, DIBIT San Raffaele Scientific Institute, Département d'Immunologie - Department of Immunology, Institut Pasteur [Paris], Charité Hospital, Humboldt-Universität zu Berlin, Universitat de Barcelona (UB), Rheumatologie, Charité - UniversitätsMedizin = Charité - University Hospital [Berlin], Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Department of Histology and Embryology, University of Rijeka, Weizmann Institute of Science [Rehovot, Israël], Régulation des Infections Rétrovirales, Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, Immunité et cancer (U932), Université Paris Descartes - Paris 5 (UPD5)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Singapore Immunology Network (SIgN), Biomedical Sciences Institute (BMSI), Institute of Virology [Zürich], College of Food Science and Technology [Shangai], Shanghai Ocean University, Institute for Medical Microbiology and Hygiene, University of Marburg, Centre for Transplantation, King's College London (MRC), Guy's Hospital [London], Erasmus University Medical Center [Rotterdam] (Erasmus MC), Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Institute, Heinrich Pette Institute [Hamburg], Institute of Translational Medicine, Department of Medicine Huddinge, Karolinska Institutet [Stockholm]-Karolinska University Hospital [Stockholm]-Lipid Laboratory, Università di Genova, Dipartimento di Medicina Sperimentale, Department of Environmental Microbiology, Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ), Experimental Immunology, Helmholtz Centre for Infection Research (HZI), Viral Immunobiology, Universität Zürich [Zürich] = University of Zurich (UZH)-Institute of Experimental Immunology [Zurich], Department of Radiation Oncology [Munich], Ludwig-Maximilians-Universität München (LMU), Department of Mathematics and Statistics, American University, William Harvey Research Institute, Barts and the London Medical School, Cytometry Laboratories and School of Veterinary Medicine, Purdue University [West Lafayette], Osaka University [Osaka], FACS and Array Core Facility, Johannes Gutenberg - Universität Mainz (JGU), Institute for Cognitive Science, University of Osnabrueck, Department of Molecular Immunology, Medizinische Universität Wien = Medical University of Vienna, Universität Leipzig [Leipzig], Institute of Immunology, School of Life Sciences-University of Science & Technology of China [Suzhou], Lymphopoïèse (Lymphopoïèse (UMR_1223 / U1223 / U-Pasteur_4)), Institut Pasteur [Paris]-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institute for Immunology, Processus de Transfert et d'Echanges dans l'Environnement - EA 3819 (PROTEE), Université de Toulon (UTLN), Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Enrico Lugli and Pratip K. Chattopadhyay were supported by grants from the Fondazione Cariplo (Grant Ricerca Biomedica 2012/0683), the Italian Ministry of Health (Bando Giovani Ricercatori GR-2011-02347324) and the European Union Marie Curie Career Integration Grant 322093 (all to E.L.). E.L. and P.K.C. are International Society for the Advancement of Cytometry (ISAC) Marylou Ingram scholars. Alice Yue and Ryan R. Brinkman were funded by Genome BC and NSERC. Klaus Warnatz received funding from the German Federal Ministry of Education and Research (BMBF 01EO1303) and the Deutsche Forschungsgemeinschaft (DECIDE, DFG WA 1597/4-1 and the TRR130). The Jung laboratory is supported by funds of the ERC and ISF. Henrik Mei is a 2017-2021 ISAC scholar. Antonio Cosma is supported by the French government program: 'Investissement d'avenir: Equipements d'Excellence' (EQUIPEX)-2010 FlowCyTech, Grant number: ANR-10-EQPX-02-01. Henrik Mei is supported by the Deutsche Forschungsgemeinschaft (DFG, grants Me3644/5-1 and TRR130/TP24)., Università degli Studi di Modena e Reggio Emilia = University of Modena and Reggio Emilia (UNIMORE), Università degli Studi di Firenze = University of Florence (UniFI)-DENOTHE Center, Institut Pasteur [Paris] (IP), Humboldt University Of Berlin, Universität Bonn = University of Bonn, Università degli studi di Genova = University of Genoa (UniGe), Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU), Universität Leipzig, Institut Pasteur [Paris] (IP)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Obstetrics & Gynecology, Rheumatology, Pediatrics, Landsteiner Laboratory, Other departments, AII - Inflammatory diseases, Università di Modena e Reggio Emilia, DENOTHE Center-University of Florence, Santa Lucia Foundation ( IRCCS ), International Occultation Timing Association European Section ( IOTA ES ), Fondazione Santa Lucia ( IRCCS ), BC Cancer Agency ( BCCRC ) -British Columbia Cancer Agency Research Centre, Fondazione don Carlo Gnocchi, Fondazione IRCCS, Immunologie des Maladies Virales et Autoimmunes ( IMVA - U1184 ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Département d'Immunologie, Humboldt Universität zu Berlin, Universitat de Barcelona ( UB ), Charité, Weizmann Institute of Science, Université de Bonn, Immunité et cancer ( U932 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut Curie-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Singapore Immunology Network ( SIgN ), Agency for Science Technology and Research, College of Food Science and Technology, Centre for Transplantation, King's College London ( MRC ), Erasmus MC University Medical Center, Helmholtz Centre for Environmental Research ( UFZ ), Helmholtz Centre for Infection Research ( HZI ), University of Zürich [Zürich] ( UZH ) -Institute of Experimental Immunology [Zurich], Ludwig-Maximilians-Universität München, Johannes Gutenberg - Universität Mainz ( JGU ), Medical University of Vienna, Lymphopoïèse, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Johannes Gutenberg - University of Mainz ( JGU ), Processus de Transfert et d'Echanges dans l'Environnement - EA 3819 ( PROTEE ), Université de Toulon ( UTLN ), Universita degli studi di Genova, Cossarizza, Andrea, Chang, Hyun-Dong, Radbruch, Andrea, Akdis, Mübeccel, Andrä, Immanuel, Annunziato, Francesco, Bacher, Petra, Barnaba, Vincenzo, Battistini, Luca, Bauer, Wolfgang M., Baumgart, Sabine, Becher, Burkhard, Beisker, Wolfgang, Berek, Claudia, Blanco, Alfonso, Borsellino, Giovanna, Boulais, Philip E., Brinkman, Ryan R., Büscher, Martin, Busch, Dirk H., Bushnell, Timothy P., Cao, Xuetao, Cavani, Andrea, Chattopadhyay, Pratip K., Cheng, Qingyu, Chow, Sue, Clerici, Mario, Cooke, Anne, Cosma, Antonio, Cosmi, Lorenzo, Cumano, Ana, Dang, Van Duc, Davies, Derek, De Biasi, Sara, Del Zotto, Genny, Della Bella, Silvia, Dellabona, Paolo, Deniz, Günnur, Dessing, Mark, Diefenbach, Andrea, Di Santo, Jame, Dieli, Francesco, Dolf, Andrea, Donnenberg, Vera S., Dörner, Thoma, Ehrhardt, Götz R. A., Endl, Elmar, Engel, Pablo, Engelhardt, Britta, Esser, Charlotte, Everts, Bart, Dreher, Anita, Falk, Christine S., Fehniger, Todd A., Filby, Andrew, Fillatreau, Simon, Follo, Marie, Förster, Irmgard, Foster, John, Foulds, Gemma A., Frenette, Paul S., Galbraith, David, Garbi, Natalio, García-Godoy, Maria Dolore, Geginat, Jen, Ghoreschi, Kamran, Gibellini, Lara, Goettlinger, Christoph, Goodyear, Carl S., Gori, Andrea, Grogan, Jane, Gross, Mor, Grützkau, Andrea, Grummitt, Daryl, Hahn, Jona, Hammer, Quirin, Hauser, Anja E., Haviland, David L., Hedley, David, Herrera, Guadalupe, Herrmann, Martin, Hiepe, Falk, Holland, Tristan, Hombrink, Pleun, Houston, Jessica P., Hoyer, Bimba F., Huang, Bo, Hunter, Christopher A., Iannone, Anna, Jäck, Hans-Martin, Jávega, Beatriz, Jonjic, Stipan, Juelke, Kerstin, Jung, Steffen, Kaiser, Toralf, Kalina, Toma, Keller, Baerbel, Khan, Srijit, Kienhöfer, Deborah, Kroneis, Thoma, Kunkel, Désirée, Kurts, Christian, Kvistborg, Pia, Lannigan, Joanne, Lantz, Olivier, Larbi, Ani, LeibundGut-Landmann, Salome, Leipold, Michael D., Levings, Megan K., Litwin, Virginia, Liu, Yanling, Lohoff, Michael, Lombardi, Giovanna, Lopez, Lilly, Lovett-Racke, Amy, Lubberts, Erik, Ludewig, Burkhard, Lugli, Enrico, Maecker, Holden T., Martrus, Glòria, Matarese, Giuseppe, Maueröder, Christian, Mcgrath, Mairi, Mcinnes, Iain, Mei, Henrik E., Melchers, Fritz, Melzer, Susanne, Mielenz, Dirk, Mills, Kingston, Mirrer, David, Mjösberg, Jenny, Moore, Jonni, Moran, Barry, Moretta, Alessandro, Moretta, Lorenzo, Mosmann, Tim R., Müller, Susann, Müller, Werner, Münz, Christian, Multhoff, Gabriele, Munoz, Luis Enrique, Murphy, Kenneth M., Nakayama, Toshinori, Nasi, Milena, Neudörfl, Christine, Nolan, John, Nourshargh, Sussan, O'Connor, José-Enrique, Ouyang, Wenjun, Oxenius, Annette, Palankar, Raghav, Panse, Isabel, Peterson, Pärt, Peth, Christian, Petriz, Jordi, Philips, Daisy, Pickl, Winfried, Piconese, Silvia, Pinti, Marcello, Pockley, A. Graham, Podolska, Malgorzata Justyna, Pucillo, Carlo, Quataert, Sally A., Radstake, Timothy R. D. J., Rajwa, Bartek, Rebhahn, Jonathan A., Recktenwald, Diether, Remmerswaal, Ester B. M., Rezvani, Katy, Rico, Laura G., Robinson, J. Paul, Romagnani, Chiara, Rubartelli, Anna, Ruckert, Beate, Ruland, Jürgen, Sakaguchi, Shimon, Sala-de-Oyanguren, Francisco, Samstag, Yvonne, Sanderson, Sharon, Sawitzki, Birgit, Scheffold, Alexander, Schiemann, Matthia, Schildberg, Frank, Schimisky, Esther, Schmid, Stephan A., Schmitt, Steffen, Schober, Kilian, Schüler, Thoma, Schulz, Axel Ronald, Schumacher, Ton, Scotta, Cristiano, Shankey, T. Vincent, Shemer, Anat, Simon, Anna-Katharina, Spidlen, Josef, Stall, Alan M., Stark, Regina, Stehle, Christina, Stein, Merle, Steinmetz, Tobit, Stockinger, Hanne, Takahama, Yousuke, Tarnok, Attila, Tian, Zhigang, Toldi, Gergely, Tornack, Julia, Traggiai, Elisabetta, Trotter, Joe, Ulrich, Henning, van der Braber, Marlou, van Lier, René A. W., Veldhoen, Marcello, Vento-Asturias, Salvador, Vieira, Paulo, Voehringer, David, Volk, Hans-Dieter, von Volkmann, Konrad, Waisman, Ari, Walker, Rachael, Ward, Michael D., Warnatz, Klau, Warth, Sarah, Watson, James V., Watzl, Carsten, Wegener, Leonie, Wiedemann, Annika, Wienands, Jürgen, Willimsky, Gerald, Wing, Jame, Wurst, Peter, Yu, Liping, Yue, Alice, Zhang, Qianjun, Zhao, Yi, Ziegler, Susanne, Zimmermann, Jakob, Cossarizza, A., Chang, H., Radbruch, A., Akdis, M., Andrã¤, I., Annunziato, F., Bacher, P., Barnaba, V., Battistini, L., Bauer, W., Baumgart, S., Becher, B., Beisker, W., Berek, C., Blanco, A., Borsellino, G., Boulais, P., Brinkman, R., Bã¼scher, M., Busch, D., Bushnell, T., Cao, X., Cavani, A., Chattopadhyay, P., Cheng, Q., Chow, S., Clerici, M., Cooke, A., Cosma, A., Cosmi, L., Cumano, A., Dang, V., Davies, D., De Biasi, S., Del Zotto, G., Della Bella, S., Dellabona, P., Deniz, G., Dessing, M., Diefenbach, A., Di Santo, J., Dieli, F., Dolf, A., Donnenberg, V., Dã¶rner, T., Ehrhardt, G., Endl, E., Engel, P., Engelhardt, B., Esser, C., Everts, B., Dreher, A., Falk, C., Fehniger, T., Filby, A., Fillatreau, S., Follo, M., Fã¶rster, I., Foster, J., Foulds, G., Frenette, P., Galbraith, D., Garbi, N., GarcÃa-Godoy, M., Geginat, J., Ghoreschi, K., Gibellini, L., Goettlinger, C., Goodyear, C., Gori, A., Grogan, J., Gross, M., Grã¼tzkau, A., Grummitt, D., Hahn, J., Hammer, Q., Hauser, A., Haviland, D., Hedley, D., Herrera, G., Herrmann, M., Hiepe, F., Holland, T., Hombrink, P., Houston, J., Hoyer, B., Huang, B., Hunter, C., Iannone, A., Jã¤ck, H., Jã¡vega, B., Jonjic, S., Juelke, K., Jung, S., Kaiser, T., Kalina, T., Keller, B., Khan, S., Kienhã¶fer, D., Kroneis, T., Kunkel, D., Kurts, C., Kvistborg, P., Lannigan, J., Lantz, O., Larbi, A., LeibundGut-Landmann, S., Leipold, M., Levings, M., Litwin, V., Liu, Y., Lohoff, M., Lombardi, G., Lopez, L., Lovett-Racke, A., Lubberts, E., Ludewig, B., Lugli, E., Maecker, H., Martrus, G., Matarese, G., Mauerã¶der, C., Mcgrath, M., Mcinnes, I., Mei, H., Melchers, F., Melzer, S., Mielenz, D., Mills, K., Mirrer, D., Mjã¶sberg, J., Moore, J., Moran, B., Moretta, A., Moretta, L., Mosmann, T., Mã¼ller, S., Mã¼ller, W., Mã¼nz, C., Multhoff, G., Munoz, L., Murphy, K., Nakayama, T., Nasi, M., Neudã¶rfl, C., Nolan, J., Nourshargh, S., O'Connor, J., Ouyang, W., Oxenius, A., Palankar, R., Panse, I., Peterson, P., Peth, C., Petriz, J., Philips, D., Pickl, W., Piconese, S., Pinti, M., Pockley, A., Podolska, M., Pucillo, C., Quataert, S., Radstake, T., Rajwa, B., Rebhahn, J., Recktenwald, D., Remmerswaal, E., Rezvani, K., Rico, L., Robinson, J., Romagnani, C., Rubartelli, A., Ruckert, B., Ruland, J., Sakaguchi, S., Sala-de-Oyanguren, F., Samstag, Y., Sanderson, S., Sawitzki, B., Scheffold, A., Schiemann, M., Schildberg, F., Schimisky, E., Schmid, S., Schmitt, S., Schober, K., Schã¼ler, T., Schulz, A., Schumacher, T., Scotta, C., Shankey, T., Shemer, A., Simon, A., Spidlen, J., Stall, A., Stark, R., Stehle, C., Stein, M., Steinmetz, T., Stockinger, H., Takahama, Y., Tarnok, A., Tian, Z., Toldi, G., Tornack, J., Traggiai, E., Trotter, J., Ulrich, H., van der Braber, M., van Lier, R., Veldhoen, M., Vento-Asturias, S., Vieira, P., Voehringer, D., Volk, H., von Volkmann, K., Waisman, A., Walker, R., Ward, M., Warnatz, K., Warth, S., Watson, J., Watzl, C., Wegener, L., Wiedemann, A., Wienands, J., Willimsky, G., Wing, J., Wurst, P., Liping, Y., Yue, A., Zhang, Q., Zhao, Y., Ziegler, S., and Zimmermann, J.
- Subjects
0301 basic medicine ,T-Lymphocytes ,Cell Separation ,T cell precursors ,0302 clinical medicine ,Immunophenotyping ,Human lymphopoiesis ,[ SDV.IMM ] Life Sciences [q-bio]/Immunology ,Immunology and Allergy ,Non-U.S. Gov't ,Immunologic Technique ,medicine.diagnostic_test ,Research Support, Non-U.S. Gov't ,virus diseases ,hemic and immune systems ,False Positive Reaction ,Cell sorting ,Flow Cytometry ,natural killer and innate lymphoid cells differentiation ,3. Good health ,Research Design ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,Human ,Quality Control ,medicine.drug_class ,Immunology ,Animals ,Cell Proliferation ,DNA ,False Positive Reactions ,Humans ,RNA ,Software ,Guidelines as Topic ,Immunologic Techniques ,chemical and pharmacologic phenomena ,Computational biology ,Biology ,Monoclonal antibody ,Research Support ,Article ,Flow cytometry ,N.I.H ,03 medical and health sciences ,Immune system ,Research Support, N.I.H., Extramural ,medicine ,early lymphoid progenitors ,Journal Article ,Mass cytometry ,IMUNOLOGIA ,Animal ,Extramural ,B cell ontogeny ,030104 developmental biology ,T-Lymphocyte ,Cytometry ,030215 immunology - Abstract
The marriage between immunology and cytometry is one of the most stable and productive in the recent history of science. A rapid search in PubMed shows that, as of July 2017, using “flow cytometry immunology” as a search term yields more than 68 000 articles, the first of which, interestingly, is not about lymphocytes. It might be stated that, after a short engagement, the exchange of the wedding rings between immunology and cytometry officially occurred when the idea to link fluorochromes to monoclonal antibodies came about. After this, recognizing different types of cells became relatively easy and feasible not only by using a simple fluorescence microscope, but also by a complex and sometimes esoteric instrument, the flow cytometer that is able to count hundreds of cells in a single second, and can provide repetitive results in a tireless manner. Given this, the possibility to analyse immune phenotypes in a variety of clinical conditions has changed the use of the flow cytometer, which was incidentally invented in the late 1960s to measure cellular DNA by using intercalating dyes, such as ethidium bromide. The epidemics of HIV/AIDS in the 1980s then gave a dramatic impulse to the technology of counting specific cells, since it became clear that the quantification of the number of peripheral blood CD4+ T cells was crucial to follow the course of the infection, and eventually for monitoring the therapy. As a consequence, the development of flow cytometers that had to be easy-to-use in all clinical laboratories helped to widely disseminate this technology. Nowadays, it is rare to find an immunological paper or read a conference abstract in which the authors did not use flow cytometry as the main tool to dissect the immune system and identify its fine and complex functions. Of note, recent developments have created the sophisticated technology of mass cytometry, which is able to simultaneously identify dozens of molecules at the single cell level and allows us to better understand the complexity and beauty of the immune system.
- Published
- 2017
- Full Text
- View/download PDF
46. Dual fluorescence reporter mice for Ccl3 transcription, translation, and intercellular communication.
- Author
-
Rodrigo MB, De Min A, Jorch SK, Martin-Higueras C, Baumgart AK, Goldyn B, Becker S, Garbi N, Lemmermann NA, and Kurts C
- Subjects
- Animals, Mice, Gene Knock-In Techniques, Mice, Transgenic, Muromegalovirus, Killer Cells, Natural immunology, Interferon-beta pharmacology, Herpesviridae Infections immunology, Cell Communication immunology, Chemokine CCL3 genetics, Chemokine CCL3 immunology, Protein Biosynthesis drug effects, Protein Biosynthesis immunology, Transcription, Genetic immunology, Models, Animal
- Abstract
Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models., (© 2024 Rodrigo et al.)
- Published
- 2024
- Full Text
- View/download PDF
47. Rapid protection against viral infections by chemokine-accelerated post-exposure vaccination.
- Author
-
Heine A, Lemmermann NAW, Flores C, Becker-Gotot J, Garbi N, Brossart P, and Kurts C
- Subjects
- Mice, Animals, Ligands, Chemokines, Adjuvants, Immunologic pharmacology, Vaccination methods, CD8-Positive T-Lymphocytes, Virus Diseases
- Abstract
Introduction: Prophylactic vaccines generate strong and durable immunity to avoid future infections, whereas post-exposure vaccinations are intended to establish rapid protection against already ongoing infections. Antiviral cytotoxic CD8
+ T cells (CTL) are activated by dendritic cells (DCs), which themselves must be activated by adjuvants to express costimulatory molecules and so-called signal 0-chemokines that attract naive CTL to the DCs., Hypothesis: Here we asked whether a vaccination protocol that combines two adjuvants, a toll-like receptor ligand (TLR) and a natural killer T cell activator, to induce two signal 0 chemokines, synergistically accelerates CTL activation., Methods: We used a well-characterized vaccination model based on the model antigen ovalbumin, the TLR9 ligand CpG and the NKT cell ligand α -galactosylceramide to induce signal 0-chemokines. Exploiting this vaccination model, we studied detailed T cell kinetics and T cell profiling in different in vivo mouse models of viral infection., Results: We found that CTL induced by both adjuvants obtained a head-start that allowed them to functionally differentiate further and generate higher numbers of protective CTL 1-2 days earlier. Such signal 0-optimized post-exposure vaccination hastened clearance of experimental adenovirus and cytomegalovirus infections., Conclusion: Our findings show that signal 0 chemokine-inducing adjuvant combinations gain time in the race against rapidly replicating microbes, which may be especially useful in post-exposure vaccination settings during viral epi/pandemics., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision., (Copyright © 2024 Heine, Lemmermann, Flores, Becker-Gotot, Garbi, Brossart and Kurts.)- Published
- 2024
- Full Text
- View/download PDF
48. Mucosal-associated invariant T cells contribute to suppression of inflammatory myeloid cells in immune-mediated kidney disease.
- Author
-
Gnirck AC, Philipp MS, Waterhölter A, Wunderlich M, Shaikh N, Adamiak V, Henneken L, Kautz T, Xiong T, Klaus D, Tomczyk P, Al-Bahra MM, Menche D, Walkenhorst M, Lantz O, Willing A, Friese MA, Huber TB, Krebs CF, Panzer U, Kurts C, and Turner JE
- Subjects
- Humans, Animals, Mice, Myeloid Cells metabolism, Anti-Inflammatory Agents metabolism, Histocompatibility Antigens Class I metabolism, Mucosal-Associated Invariant T Cells, Kidney Diseases metabolism
- Abstract
Mucosal-associated invariant T (MAIT) cells have been implicated in various inflammatory diseases of barrier organs, but so far, their role in kidney disease is unclear. Here we report that MAIT cells that recognize their prototypical ligand, the vitamin B2 intermediate 5-OP-RU presented by MR1, reside in human and mouse kidneys. Single cell RNAseq analysis reveals several intrarenal MAIT subsets, and one, carrying the genetic fingerprint of tissue-resident MAIT17 cells, is activated and expanded in a murine model of crescentic glomerulonephritis (cGN). An equivalent subset is also present in kidney biopsies of patients with anti-neutrophil cytoplasmatic antibody (ANCA)-associated cGN. MAIT cell-deficient MR1 mice show aggravated disease, whereas B6-MAIT
CAST mice, harboring higher MAIT cell numbers, are protected from cGN. The expanded MAIT17 cells express anti-inflammatory mediators known to suppress cGN, such as CTLA-4, PD-1, and TGF-β. Interactome analysis predicts CXCR6 - CXCL16-mediated cross-talk with renal mononuclear phagocytes, known to drive cGN progression. In line, we find that cGN is aggravated upon CXCL16 blockade. Finally, we present an optimized 5-OP-RU synthesis method which we apply to attenuating cGN in mice. In summary, we propose that CXCR6+ MAIT cells might play a protective role in cGN, implicating them as a potential target for anti-inflammatory therapies., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
49. Stimulation of Immune Checkpoint Molecule B and T-Lymphocyte Attenuator Alleviates Experimental Crescentic Glomerulonephritis.
- Author
-
Diefenhardt P, Braumann M, Schömig T, Trinsch B, Sierra Gonzalez C, Becker-Gotot J, Völker LA, Ester L, Mandel AM, Hawiger D, Abdallah AT, Schermer B, Göbel H, Brinkkötter P, Kurts C, Benzing T, and Brähler S
- Subjects
- Mice, Humans, Animals, Immune Checkpoint Proteins, Inflammation complications, Mice, Inbred C57BL, Glomerulonephritis pathology, Glomerulonephritis, Membranoproliferative complications, Nephritis
- Abstract
Significance Statement: Treatment of acute, crescentic glomerulonephritis (GN) consists of unspecific and potentially toxic immunosuppression. T cells are central in the pathogenesis of GN, and various checkpoint molecules control their activation. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown potential for restraining inflammation in other T-cell-mediated disease models. To investigate its role in GN in a murine model of crescentic nephritis, the authors induced nephrotoxic nephritis in BTLA-deficient mice and wild-type mice. They found that BTLA has a renoprotective role through suppression of local Th1-driven inflammation and expansion of T regulatory cells and that administration of an agonistic anti-BTLA antibody attenuated experimental GN. These findings suggest that antibody-based modulation of BTLA may represent a treatment strategy in human glomerular disease., Background: Modulating T-lymphocytes represents a promising targeted therapeutic option for glomerulonephritis (GN) because these cells mediate damage in various experimental and human GN types. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown its potential to restrain inflammation in other T-cell-mediated disease models. Its role in GN, however, has not been investigated., Methods: We induced nephrotoxic nephritis (NTN), a mouse model of crescentic GN, in Btla -deficient ( BtlaKO ) mice and wild-type littermate controls and assessed disease severity using functional and histologic parameters at different time points after disease induction. Immunologic changes were comprehensively evaluated by flow cytometry, RNA sequencing, and in vitro assays for dendritic cell and T-cell function. Transfer experiments into Rag1KO mice confirmed the observed in vitro findings. In addition, we evaluated the potential of an agonistic anti-BTLA antibody to treat NTN in vivo ., Results: The BtlaKO mice developed aggravated NTN, driven by an increase of infiltrating renal Th1 cells. Single-cell RNA sequencing showed increased renal T-cell activation and positive regulation of the immune response. Although BTLA-deficient regulatory T cells (Tregs) exhibited preserved suppressive function in vitro and in vivo , BtlaKO T effector cells evaded Treg suppression. Administration of an agonistic anti-BTLA antibody robustly attenuated NTN by suppressing nephritogenic T effector cells and promoting Treg expansion., Conclusions: In a model of crescentic GN, BTLA signaling effectively restrained nephritogenic Th1 cells and promoted regulatory T cells. Suppression of T-cell-mediated inflammation by BTLA stimulation may prove relevant for a broad range of conditions involving acute GN., (Copyright © 2023 by the American Society of Nephrology.)
- Published
- 2023
- Full Text
- View/download PDF
50. Multidisciplinary recommendations for the management of CAR-T recipients in the post-COVID-19 pandemic era.
- Author
-
Zhang T, Tian W, Wei S, Lu X, An J, He S, Zhao J, Gao Z, Li L, Lian K, Zhou Q, Zhang H, Wang L, Su L, Kang H, Niu T, Zhao A, Pan J, Cai Q, Xu Z, Chen W, Jing H, Li P, Zhao W, Cao Y, Mi J, Chen T, Chen Y, Zou P, Lukacs-Kornek V, Kurts C, Li J, Liu X, Mei Q, Zhang Y, and Wei J
- Abstract
The outbreak of coronavirus disease 2019 (COVID-19) posed an unprecedented challenge on public health systems. Despite the measures put in place to contain it, COVID-19 is likely to continue experiencing sporadic outbreaks for some time, and individuals will remain susceptible to recurrent infections. Chimeric antigen receptor (CAR)-T recipients are characterized by durable B-cell aplasia, hypogammaglobulinemia and loss of T-cell diversity, which lead to an increased proportion of severe/critical cases and a high mortality rate after COVID-19 infection. Thus, treatment decisions have become much more complex and require greater caution when considering CAR T-cell immunotherapy. Hence, we reviewed the current understanding of COVID-19 and reported clinical experience in the management of COVID-19 and CAR-T therapy. After a panel discussion, we proposed a rational procedure pertaining to CAR-T recipients with the aim of maximizing the benefit of CAR-T therapy in the post COVID-19 pandemic era., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.