1. RGB-based machine vision for enhanced pig disease symptoms monitoring and health management: a review
- Author
-
Md Nasim Reza, Kyu-Ho Lee, Eliezel Habineza, Samsuzzaman, Hyunjin Kyoung, Young Kyoung Choi, Gookhwan Kim, and Sun-Ok Chung
- Subjects
Smart livestock production ,Pig health monitoring ,Machine vision ,Pig behavior pattern ,Artificial intelligence ,Animal culture ,SF1-1100 - Abstract
The growing demands of sustainable, efficient, and welfare-conscious pig husbandry have necessitated the adoption of advanced technologies. Among these, RGB imaging and machine vision technology may offer a promising solution for early disease detection and proactive disease management in advanced pig husbandry practices. This review explores innovative applications for monitoring disease symptoms by assessing features that directly or indirectly indicate disease risk, as well as for tracking body weight and overall health. Machine vision and image processing algorithms enable for the real-time detection of subtle changes in pig appearance and behavior that may signify potential health issues. Key indicators include skin lesions, inflammation, ocular and nasal discharge, and deviations in posture and gait, each of which can be detected non-invasively using RGB cameras. Moreover, when integrated with thermal imaging, RGB systems can detect fever, a reliable indicator of infection, while behavioral monitoring systems can track abnormal posture, reduced activity, and altered feeding and drinking habits, which are often precursors to illness. The technology also facilitates the analysis of respiratory symptoms, such as coughing or sneezing (enabling early identification of respiratory diseases, one of the most significant challenges in pig farming), and the assessment of fecal consistency and color (providing valuable insights into digestive health). Early detection of disease or poor health supports proactive interventions, reducing mortality and improving treatment outcomes. Beyond direct symptom monitoring, RGB imaging and machine vision can indirectly assess disease risk by monitoring body weight, feeding behavior, and environmental factors such as overcrowding and temperature. However, further research is needed to refine the accuracy and robustness of algorithms in diverse farming environments. Ultimately, integrating RGB-based machine vision into existing farm management systems could provide continuous, automated surveillance, generating real-time alerts and actionable insights; these can support data-driven disease prevention strategies, reducing the need for mass medication and the development of antimicrobial resistance.
- Published
- 2025
- Full Text
- View/download PDF