5 results on '"LaForce M"'
Search Results
2. W135 Meningococcal Disease in Africa
- Author
-
Pollard, A, Santamaria, M, Maiden, M, Nicolas, P, Handford, S, Issa, M, Longworth, E, Jacobsson, S, Parent du Chatelet, I, Koumare, B, Soriano-Gabarro, M, Achtman, M, Greenwood, B, and LaForce, M
- Published
- 2003
3. Evaluation of Critical Quality Attributes of a Pentavalent (A, C, Y, W, X) Meningococcal Conjugate Vaccine for Global Use.
- Author
-
Bolgiano B, Moran E, Beresford NJ, Gao F, Care R, Desai T, Nordgren IK, Rudd TR, Feavers IM, Bore P, Patni S, Gavade V, Mallya A, Kale S, Sharma P, Goel SK, Gairola S, Hattarki S, Avalaskar N, Sarma AD, LaForce M, Ravenscroft N, Khandke L, Alderson MR, Dhere RM, and Pisal SS
- Abstract
Towards achieving the goal of eliminating epidemic outbreaks of meningococcal disease in the African meningitis belt, a pentavalent glycoconjugate vaccine (NmCV-5) has been developed to protect against Neisseria meningitidis serogroups A, C, Y, W and X. MenA and X polysaccharides are conjugated to tetanus toxoid (TT) while MenC, Y and W polysaccharides are conjugated to recombinant cross reactive material 197 (rCRM
197 ), a non-toxic genetic variant of diphtheria toxin. This study describes quality control testing performed by the manufacturer, Serum Institute of India Private Limited (SIIPL), and the independent control laboratory of the U.K. (NIBSC) on seven clinical lots of the vaccine to ensure its potency, purity, safety and consistency of its manufacturing. In addition to monitoring upstream-manufactured components, samples of drug substance, final drug product and stability samples were evaluated. This paper focuses on the comparison of the vaccine's critical quality attributes and reviews key indicators of its stability and immunogenicity. Comparable results were obtained by the two laboratories demonstrating sufficient levels of polysaccharide O -acetylation, consistency in size of the bulk conjugate molecules, integrity of the conjugated saccharides in the drug substance and drug product, and acceptable endotoxin content in the final drug product. The freeze-dried vaccine in 5-dose vials was stable based on molecular sizing and free saccharide assays. Lot-to-lot manufacturing consistency was also demonstrated in preclinical studies for polysaccharide-specific IgG and complement-dependent serum bactericidal activity for each serogroup. This study demonstrates the high quality and stability of NmCV-5, which is now undergoing Phase 3 clinical trials in Africa and India.- Published
- 2021
- Full Text
- View/download PDF
4. Phenotypic and genotypic characterization of meningococcal carriage and disease isolates in Burkina Faso after mass vaccination with a serogroup a conjugate vaccine.
- Author
-
Kristiansen PA, Ba AK, Sanou I, Ouédraogo AS, Ouédraogo R, Sangaré L, Diomandé F, Kandolo D, Thomas JD, Clark TA, Laforce M, and Caugant DA
- Subjects
- Adolescent, Adult, Anti-Bacterial Agents pharmacology, Bacterial Capsules genetics, Burkina Faso, Carrier State microbiology, Child, Child, Preschool, Cross-Sectional Studies, Genotype, Humans, Infant, Mass Vaccination, Meningococcal Infections prevention & control, Microbial Sensitivity Tests, Neisseria meningitidis drug effects, Neisseria meningitidis genetics, Phenotype, Meningococcal Infections microbiology, Meningococcal Vaccines administration & dosage, Neisseria meningitidis isolation & purification
- Abstract
Background: The conjugate vaccine against serogroup A Neisseria meningitidis (NmA), MenAfriVac, was first introduced in mass vaccination campaigns of the 1-29-year-olds in Burkina Faso in 2010. The aim of this study was to genetically characterize meningococcal isolates circulating in Burkina Faso before and up to 13 months after MenAfriVac mass vaccination., Methods: A total of 1,659 meningococcal carriage isolates were collected in a repeated cross-sectional carriage study of the 1-29-year-olds in three districts of Burkina Faso in 2010 and 2011, before and up to 13 months after mass vaccination. Forty-two invasive isolates were collected through the national surveillance in Burkina Faso in the same period. All the invasive isolates and 817 carriage isolates were characterized by serogroup, multilocus sequence typing and porA-fetA sequencing., Results: Seven serogroup A isolates were identified, six in 2010, before vaccination (4 from carriers and 2 from patients), and one in 2011 from an unvaccinated patient; all were assigned to sequence type (ST)-2859 of the ST-5 clonal complex. No NmA carriage isolate and no ST-2859 isolate with another capsule were identified after vaccination. Serogroup X carriage and disease prevalence increased before vaccine introduction, due to the expansion of ST-181, which comprised 48.5% of all the characterized carriage isolates. The hypervirulent serogroup W ST-11 clone that was responsible for most of meningococcal disease in 2011 and 2012 was not observed in 2010; it appeared during the epidemic season of 2011, when it represented 40.6% of the serogroup W carriage isolates., Conclusions: Successive clonal waves of ST-181 and ST-11 may explain the changing epidemiology in Burkina Faso after the virtual disappearance of NmA disease and carriage. No ST-2859 strain of any serogroup was found after vaccination, suggesting that capsule switching of ST-2859 did not occur, at least not during the first 13 months after vaccination.
- Published
- 2013
- Full Text
- View/download PDF
5. Baseline meningococcal carriage in Burkina Faso before the introduction of a meningococcal serogroup A conjugate vaccine.
- Author
-
Kristiansen PA, Diomandé F, Wei SC, Ouédraogo R, Sangaré L, Sanou I, Kandolo D, Kaboré P, Clark TA, Ouédraogo AS, Absatou KB, Ouédraogo CD, Hassan-King M, Thomas JD, Hatcher C, Djingarey M, Messonnier N, Préziosi MP, LaForce M, and Caugant DA
- Subjects
- Adolescent, Adult, Bacterial Typing Techniques, Burkina Faso epidemiology, Carrier State microbiology, Child, Child, Preschool, Cross-Sectional Studies, Female, Genotype, Humans, Infant, Male, Meningococcal Infections microbiology, Meningococcal Vaccines administration & dosage, Meningococcal Vaccines immunology, Molecular Typing, Multilocus Sequence Typing, Prevalence, Rural Population, Serotyping, Urban Population, Vaccines, Conjugate administration & dosage, Vaccines, Conjugate immunology, Young Adult, Carrier State epidemiology, Meningococcal Infections epidemiology, Neisseria meningitidis classification, Neisseria meningitidis isolation & purification
- Abstract
The serogroup A meningococcal conjugate vaccine MenAfriVac has the potential to confer herd immunity by reducing carriage prevalence of epidemic strains. To better understand this phenomenon, we initiated a meningococcal carriage study to determine the baseline carriage rate and serogroup distribution before vaccine introduction in the 1- to 29-year old population in Burkina Faso, the group chosen for the first introduction of the vaccine. A multiple cross-sectional carriage study was conducted in one urban and two rural districts in Burkina Faso in 2009. Every 3 months, oropharyngeal samples were collected from >5,000 randomly selected individuals within a 4-week period. Isolation and identification of the meningococci from 20,326 samples were performed by national laboratories in Burkina Faso. Confirmation and further strain characterization, including genogrouping, multilocus sequence typing, and porA-fetA sequencing, were performed in Norway. The overall carriage prevalence for meningococci was 3.98%; the highest prevalence was among the 15- to 19-year-olds for males and among the 10- to 14-year-olds for females. Serogroup Y dominated (2.28%), followed by serogroups X (0.44%), A (0.39%), and W135 (0.34%). Carriage prevalence was the highest in the rural districts and in the dry season, but serogroup distribution also varied by district. A total of 29 sequence types (STs) and 51 porA-fetA combinations were identified. The dominant clone was serogroup Y, ST-4375, P1.5-1,2-2/F5-8, belonging to the ST-23 complex (47%). All serogroup A isolates were ST-2859 of the ST-5 complex with P1.20,9/F3-1. This study forms a solid basis for evaluating the impact of MenAfriVac introduction on serogroup A carriage.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.