31 results on '"Maryse Moya-Nilges"'
Search Results
2. Hepatic expression of GAA results in enhanced enzyme bioavailability in mice and non-human primates
- Author
-
Helena Costa-Verdera, Fanny Collaud, Christopher R. Riling, Pauline Sellier, Jayme M. L. Nordin, G. Michael Preston, Umut Cagin, Julien Fabregue, Simon Barral, Maryse Moya-Nilges, Jacomina Krijnse-Locker, Laetitia van Wittenberghe, Natalie Daniele, Bernard Gjata, Jeremie Cosette, Catalina Abad, Marcelo Simon-Sola, Severine Charles, Mathew Li, Marco Crosariol, Tom Antrilli, William J. Quinn, David A. Gross, Olivier Boyer, Xavier M. Anguela, Sean M. Armour, Pasqualina Colella, Giuseppe Ronzitti, and Federico Mingozzi
- Subjects
Science - Abstract
Pompe disease is currently treated with enzyme replacement therapy (ERT) with recombinant human acid alpha-glucosidase (GAA). Here, the authors show hepatic-directed gene therapy with AAV vectors enhances GAA bioavailability compared with ERT, resulting in improved rescue of the disease phenotype in mice and broad enzyme distribution in mice and non-human primates.
- Published
- 2021
- Full Text
- View/download PDF
3. Alive Pathogenic and Saprophytic Leptospires Enter and Exit Human and Mouse Macrophages With No Intracellular Replication
- Author
-
Ignacio Santecchia, Delphine Bonhomme, Stylianos Papadopoulos, Pedro Escoll, Alexandre Giraud-Gatineau, Maryse Moya-Nilges, Frédérique Vernel-Pauillac, Ivo Gomperts Boneca, and Catherine Werts
- Subjects
Leptospira interrogans ,Leptospira biflexa ,macrophages ,intracellularity ,TLRs ,high content confocal microscopy ,Microbiology ,QR1-502 - Abstract
Leptospira interrogans are pathogenic bacteria responsible for leptospirosis, a zoonosis impacting 1 million people per year worldwide. Leptospires can infect all vertebrates, but not all hosts develop similar symptoms. Human and cattle may suffer from mild to acute illnesses and are therefore considered as sensitive to leptospirosis. In contrast, mice and rats remain asymptomatic upon infection, although they get chronically colonized in their kidneys. Upon infection, leptospires are stealth pathogens that partially escape the recognition by the host innate immune system. Although leptospires are mainly extracellular bacteria, it was suggested that they could also replicate within macrophages. However, contradictory data in the current literature led us to reevaluate these findings. Using a gentamicin–protection assay coupled to high-content (HC) microscopy, we observed that leptospires were internalized in vivo upon peritoneal infection of C57BL/6J mice. Additionally, three different serotypes of pathogenic L. interrogans and the saprophytic L. biflexa actively infected both human (PMA differentiated) THP1 and mouse RAW264.7 macrophage cell lines. Next, we assessed the intracellular fate of leptospires using bioluminescent strains, and we observed a drastic reduction in the leptospiral intracellular load between 3 h and 6 h post-infection, suggesting that leptospires do not replicate within these cells. Surprisingly, the classical macrophage microbicidal mechanisms (phagocytosis, autophagy, TLR–mediated ROS, and RNS production) were not responsible for the observed decrease. Finally, we demonstrated that the reduction in the intracellular load was associated with an increase of the bacteria in the supernatant, suggesting that leptospires exit both human and murine macrophages. Overall, our study reevaluated the intracellular fate of leptospires and favors an active entrance followed by a rapid exit, suggesting that leptospires do not have an intracellular lifestyle in macrophages.
- Published
- 2022
- Full Text
- View/download PDF
4. The New GPI-Anchored Protein, SwgA, Is Involved in Nitrogen Metabolism in the Pathogenic Filamentous Fungus Aspergillus fumigatus
- Author
-
Marketa Samalova, Patricia Flamant, Rémi Beau, Mike Bromley, Maryse Moya-Nilges, Thierry Fontaine, Jean-Paul Latgé, and Isabelle Mouyna
- Subjects
Aspergillus fumigatus ,conidia ,cell wall ,GPI-anchored protein ,morphogenesis ,nitrogen metabolism ,Biology (General) ,QH301-705.5 - Abstract
GPI-anchored proteins display very diverse biological (biochemical and immunological) functions. An in silico analysis has revealed that the genome of Aspergillus fumigatus contains 86 genes coding for putative GPI-anchored proteins (GPI-APs). Past research has demonstrated the involvement of GPI-APs in cell wall remodeling, virulence, and adhesion. We analyzed a new GPI-anchored protein called SwgA. We showed that this protein is mainly present in the Clavati of Aspergillus and is absent from yeasts and other molds. The protein, localized in the membrane of A. fumigatus, is involved in germination, growth, and morphogenesis, and is associated with nitrogen metabolism and thermosensitivity. swgA is controlled by the nitrogen regulator AreA. This current study indicates that GPI-APs have more general functions in fungal metabolism than cell wall biosynthesis.
- Published
- 2023
- Full Text
- View/download PDF
5. Gene therapy with secreted acid alpha-glucosidase rescues Pompe disease in a novel mouse model with early-onset spinal cord and respiratory defects
- Author
-
Pasqualina Colella, Pauline Sellier, Manuel J. Gomez, Maria G. Biferi, Guillaume Tanniou, Nicolas Guerchet, Mathilde Cohen-Tannoudji, Maryse Moya-Nilges, Laetitia van Wittenberghe, Natalie Daniele, Bernard Gjata, Jacomina Krijnse-Locker, Fanny Collaud, Marcelo Simon-Sola, Severine Charles, Umut Cagin, and Federico Mingozzi
- Subjects
Pompe disease ,Mouse model ,Respiratory function ,Spinal cord ,Muscle ,AAV ,Medicine ,Medicine (General) ,R5-920 - Abstract
Background: Pompe disease (PD) is a neuromuscular disorder caused by deficiency of acidalpha-glucosidase (GAA), leading to motor and respiratory dysfunctions. Available Gaa knock-out (KO) mouse models do not accurately mimic PD, particularly its highly impaired respiratory phenotype. Methods: Here we developed a new mouse model of PD crossing Gaa KOB6;129 with DBA2/J mice. We subsequently treated Gaa KODBA2/J mice with adeno-associated virus (AAV) vectors expressing a secretable form of GAA (secGAA). Findings: Male Gaa KODBA2/J mice present most of the key features of the human disease, including early lethality, severe respiratory impairment, cardiac hypertrophy and muscle weakness. Transcriptome analyses of Gaa KODBA2/J, compared to the parental Gaa KOB6;129 mice, revealed a profoundly impaired gene signature in the spinal cord and a similarly deregulated gene expression in skeletal muscle. Muscle and spinal cord transcriptome changes, biochemical defects, respiratory and muscle function in the Gaa KODBA2/J model were significantly improved upon gene therapy with AAV vectors expressing secGAA. Interpretation: These data show that the genetic background impacts on the severity of respiratory function and neuroglial spinal cord defects in the Gaa KO mouse model of PD. Our findings have implications for PD prognosis and treatment, show novel molecular pathophysiology mechanisms of the disease and provide a unique model to study PD respiratory defects, which majorly affect patients. Funding: This work was supported by Genethon, the French Muscular Dystrophy Association (AFM), the European Commission (grant nos. 667751, 617432, and 797144), and Spark Therapeutics.
- Published
- 2020
- Full Text
- View/download PDF
6. Defective lytic transglycosylase disrupts cell morphogenesis by hindering cell wall de-O-acetylation in Neisseria meningitidis
- Author
-
Allison Hillary Williams, Richard Wheeler, Ala-Eddine Deghmane, Ignacio Santecchia, Ryan E Schaub, Samia Hicham, Maryse Moya Nilges, Christian Malosse, Julia Chamot-Rooke, Ahmed Haouz, Joseph P Dillard, William P Robins, Muhamed-Kheir Taha, and Ivo Gomperts Boneca
- Subjects
Neisseria meningitidis ,peptidoglycan ,Lytic transglycosylase ,cell division ,cell separation ,X-ray crystallography ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Lytic transglycosylases (LT) are enzymes involved in peptidoglycan (PG) remodeling. However, their contribution to cell-wall-modifying complexes and their potential as antimicrobial drug targets remains unclear. Here, we determined a high-resolution structure of the LT, an outer membrane lipoprotein from Neisseria species with a disordered active site helix (alpha helix 30). We show that deletion of the conserved alpha-helix 30 interferes with the integrity of the cell wall, disrupts cell division, cell separation, and impairs the fitness of the human pathogen Neisseria meningitidis during infection. Additionally, deletion of alpha-helix 30 results in hyperacetylated PG, suggesting this LtgA variant affects the function of the PG de-O-acetylase (Ape 1). Our study revealed that Ape 1 requires LtgA for optimal function, demonstrating that LTs can modulate the activity of their protein-binding partner. We show that targeting specific domains in LTs can be lethal, which opens the possibility that LTs are useful drug-targets.
- Published
- 2020
- Full Text
- View/download PDF
7. Supplementary Figure from Escherichia coli–Specific CXCL13-Producing TFH Are Associated with Clinical Efficacy of Neoadjuvant PD-1 Blockade against Muscle-Invasive Bladder Cancer
- Author
-
Yohann Loriot, Laurence Zitvogel, Jean-Yves Scoazec, Guido Kroemer, Miriam Merad, Fabrice Andre, Benjamin Besse, Michiel S. Van Der Heijden, Nick Van Dijk, Jeroen Van Dorp, Aurélien Marabelle, Lisa Derosa, Gwénaël Le Teuff, Florent Ginhoux, Mathieu Rouanne, Jacques Fieschi, Yves Allory, Camelia Radulescu, Etienne Rouleau, Romain Daillere, Adeline Mallet, Maryse Moya-Nilges, Nadège Cayet, Ivo Gomperts Boneca, Shaima Belhechmi, Baptiste Archambaud, Thibault Raoult, Aymeric Silvin, Kevin Mulder, Garett Dunsmore, François-Xavier Danlos, Camille Bleriot, Jacques Bou Khalil, Gabriel Haddad, Caroline Davin, Mounia Filahi, Thomas Sbarrato, Allan Sauvat, Nicolas Signolle, Virginie Marty, Pierre Ly, Caroline Flament, Marine Mazzenga, Agathe Dubuisson, Idir Ouzaid, Evanguelos Xylinas, Morgan Roupret, Luca Campedel, Carole Helissey, Gwenaelle Gravis, Géraldine Pignot, François Audenet, Constance Thibault, Cédric Lebacle, Cassandra Thelemaque, Maxime Descartes Mbogning-Fonkou, Marianne Gazzano, Isabelle Peguillet, Carolina Alves Costa Silva, Leonardo Lordello, and Anne-Gaëlle Goubet
- Abstract
Supplementary Figure from Escherichia coli–Specific CXCL13-Producing TFH Are Associated with Clinical Efficacy of Neoadjuvant PD-1 Blockade against Muscle-Invasive Bladder Cancer
- Published
- 2023
- Full Text
- View/download PDF
8. Data from Escherichia coli–Specific CXCL13-Producing TFH Are Associated with Clinical Efficacy of Neoadjuvant PD-1 Blockade against Muscle-Invasive Bladder Cancer
- Author
-
Yohann Loriot, Laurence Zitvogel, Jean-Yves Scoazec, Guido Kroemer, Miriam Merad, Fabrice Andre, Benjamin Besse, Michiel S. Van Der Heijden, Nick Van Dijk, Jeroen Van Dorp, Aurélien Marabelle, Lisa Derosa, Gwénaël Le Teuff, Florent Ginhoux, Mathieu Rouanne, Jacques Fieschi, Yves Allory, Camelia Radulescu, Etienne Rouleau, Romain Daillere, Adeline Mallet, Maryse Moya-Nilges, Nadège Cayet, Ivo Gomperts Boneca, Shaima Belhechmi, Baptiste Archambaud, Thibault Raoult, Aymeric Silvin, Kevin Mulder, Garett Dunsmore, François-Xavier Danlos, Camille Bleriot, Jacques Bou Khalil, Gabriel Haddad, Caroline Davin, Mounia Filahi, Thomas Sbarrato, Allan Sauvat, Nicolas Signolle, Virginie Marty, Pierre Ly, Caroline Flament, Marine Mazzenga, Agathe Dubuisson, Idir Ouzaid, Evanguelos Xylinas, Morgan Roupret, Luca Campedel, Carole Helissey, Gwenaelle Gravis, Géraldine Pignot, François Audenet, Constance Thibault, Cédric Lebacle, Cassandra Thelemaque, Maxime Descartes Mbogning-Fonkou, Marianne Gazzano, Isabelle Peguillet, Carolina Alves Costa Silva, Leonardo Lordello, and Anne-Gaëlle Goubet
- Abstract
Biomarkers guiding the neoadjuvant use of immune-checkpoint blockers (ICB) are needed for patients with localized muscle-invasive bladder cancers (MIBC). Profiling tumor and blood samples, we found that follicular helper CD4+ T cells (TFH) are among the best therapeutic targets of pembrolizumab correlating with progression-free survival. TFH were associated with tumoral CD8 and PD-L1 expression at baseline and the induction of tertiary lymphoid structures after pembrolizumab. Blood central memory TFH accumulated in tumors where they produce CXCL13, a chemokine found in the plasma of responders only. IgG4+CD38+ TFH residing in bladder tissues correlated with clinical benefit. Finally, TFH and IgG directed against urothelium-invasive Escherichia coli dictated clinical responses to pembrolizumab in three independent cohorts. The links between tumor infection and success of ICB immunomodulation should be prospectively assessed at a larger scale.Significance:In patients with bladder cancer treated with neoadjuvant pembrolizumab, E. coli–specific CXCL13 producing TFH and IgG constitute biomarkers that predict clinical benefit. Beyond its role as a biomarker, such immune responses against E. coli might be harnessed for future therapeutic strategies.This article is highlighted in the In This Issue feature, p. 2221
- Published
- 2023
- Full Text
- View/download PDF
9. DOCK11 deficiency in patients with X-linked actinopathy and autoimmunity
- Author
-
Charlotte Boussard, Laure Delage, Tania Gajardo, Alexandre Kauskot, Maxime Batignes, Nicolas Goudin, Marie-Claude Stolzenberg, Camille Brunaud, Patricia Panikulam, Quentin Riller, Maryse Moya-Nilges, Jean Solarz, Christelle Reperant, Béatrice Durel, Jean-Claude Bordet, Olivier Pellé, Corinne Lebreton, Aude Magerus-Chatinet, Vithura Pirabakaran, Pablo Vargas, Sébastien Dupichaud, Marie Jeanpierre, Angélique Vinit, Mohammed Zarhrate, Cécile Masson, Nathalie Aladjidi, Peter D Arkwright, Brigitte Bader-Meunier, Sandrine Baron Joly, Joy Benadiba, Elise Bernard, Dominique Berrebi, Christine Bodemer, Martin Castelle, Fabienne Charbit-Henrion, Marwa Chbihi, Agathe Debray, Philippe Drabent, Sylvie Fraitag, Miguel Hié, Judith Landman-Parker, Ludovic Lhermitte, Despina Moshous, Pierre Rohrlich, Frank M Ruemmele, Anne Welfringer-Morin, Maud Tusseau, Alexandre Belot, Nadine Cerf-Bensussan, Marie Roelens, Capucine Picard, Bénédicte Neven, Alain Fischer, Isabelle Callebaut, Mickaël Mathieu Ménager, Fernando E Sepulveda, Frédéric Adam, and Frédéric Rieux-Laucat
- Subjects
Immunology ,Cell Biology ,Hematology ,Biochemistry - Abstract
Dedicator of cytokinesis (DOCK) proteins play a central role in actin cytoskeleton regulation. This is highlighted by the DOCK2 and DOCK8 deficiencies leading to actinopathies and immune deficiencies. DOCK8 and DOCK11 activate CDC42, a RHO-GTPase involved in actin cytoskeleton dynamics, among many cellular functions. The role of DOCK11 in human immune disease has been long suspected but has never been described so far. We studied eight male patients, from seven unrelated families, with hemizygous DOCK11 missense variants leading to reduced DOCK11 expression. The patients were presenting with early-onset autoimmunity, including cytopenia, systemic lupus erythematosus, skin, and digestive manifestations. Patients' platelets exhibited abnormal ultrastructural morphology and spreading as well as impaired CDC42 activity. In vitro activated T cells and B lymphoblastoid cell lines (B-LCL) of patients exhibited aberrant protrusions and abnormal migration speed in confined channels concomitant with altered actin polymerization during migration. A DOCK11 knock-down recapitulated these abnormal cellular phenotypes in monocytes-derived dendritic cells (MDDC) and primary activated T cells from healthy controls. Lastly, in line with the patients' autoimmune manifestations, we also observed abnormal regulatory T cells (Tregs) phenotype with profoundly reduced FOXP3 and IKZF2 expression. Moreover, we found a reduced T cell proliferation and an impaired STAT5B phosphorylation upon IL2 stimulation of the patients' lymphocytes. In conclusion, DOCK11 deficiency is a new X-linked immune-related actinopathy leading to impaired CDC42 activity and STAT5 activation, and associated with abnormal actin cytoskeleton remodeling as well as Tregs phenotype culminating in immune dysregulation and severe early-onset autoimmunity.
- Published
- 2023
- Full Text
- View/download PDF
10. Hepatic expression of GAA results in enhanced enzyme bioavailability in mice and non-human primates
- Author
-
Catalina Abad, N. Danièle, Jayme M.L. Nordin, Giuseppe Ronzitti, Bernard Gjata, Helena Costa-Verdera, Simon Barral, Sean M. Armour, Marcelo Simon-Sola, Fanny Collaud, Marco Crosariol, Julien Fabregue, David A. Gross, Mathew Li, Jérémie Cosette, Laetitia van Wittenberghe, Pasqualina Colella, Maryse Moya-Nilges, G. Michael Preston, Christopher Riling, Xavier M. Anguela, Federico Mingozzi, Severine Charles, Pauline Sellier, Tom Antrilli, William J. Quinn, Umut Cagin, Jacomina Krijnse-Locker, Olivier Boyer, Généthon, Approches génétiques intégrées et nouvelles thérapies pour les maladies rares (INTEGRARE), Université d'Évry-Val-d'Essonne (UEVE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay-Généthon, Centre de recherche en Myologie – U974 SU-INSERM, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Spark Therapeutics [Philadelphia, PA, USA], Institut Pasteur [Paris] (IP), Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), This work was supported by Genethon and the French Muscular Dystrophy Association,the European Union’s research and innovation program under grant agreement no.667751 (to F.M.), the European Research Council Consolidator Grant under grantagreement no. 617432 (to F.M.), Marie Skłodowska-Curie Actions Individual Fellowship(MSCA-IF) grant agreement no. 797144 (to U.C.), a grant from the DIM ThérapieGénique (to D.A.G.) and by Spark Therapeutics under a sponsored research agreementto Genethon., ANR-16-CE92-0008,membrane dynamics,Rupture et réparation membranaire : stratégies d'assemblage virale(2016), European Project: 667751,H2020,H2020-PHC-2015-two-stage,MYOCURE(2016), European Project: 617432,EC:FP7:ERC,ERC-2013-CoG,MOMAAV(2014), Gestionnaire, Hal Sorbonne Université, Development of an innovative gene therapy platform to cure rare hereditary muscle disorders - MYOCURE - - H20202016-01-01 - 2019-12-31 - 667751 - VALID, Molecular signatures and Modulation of immunity to Adeno-Associated Virus vectors - MOMAAV - - EC:FP7:ERC2014-07-01 - 2019-06-30 - 617432 - VALID, Thérapie des maladies du muscle strié, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), and Institut Pasteur [Paris]
- Subjects
Male ,congenital, hereditary, and neonatal diseases and abnormalities ,Genetic enhancement ,Science ,Metabolic disorders ,General Physics and Astronomy ,Pharmacology ,General Biochemistry, Genetics and Molecular Biology ,Virus ,Article ,law.invention ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Gene therapy ,Pharmacokinetics ,law ,Autophagy ,Distribution (pharmacology) ,Medicine ,Animals ,Enzyme Replacement Therapy ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,Multidisciplinary ,[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology ,business.industry ,Glycogen Storage Disease Type II ,nutritional and metabolic diseases ,alpha-Glucosidases ,General Chemistry ,Enzyme replacement therapy ,Phenotype ,3. Good health ,Enzyme ,chemistry ,Liver ,Recombinant DNA ,Female ,business ,030217 neurology & neurosurgery ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
Pompe disease (PD) is a severe neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). PD is currently treated with enzyme replacement therapy (ERT) with intravenous infusions of recombinant human GAA (rhGAA). Although the introduction of ERT represents a breakthrough in the management of PD, the approach suffers from several shortcomings. Here, we developed a mouse model of PD to compare the efficacy of hepatic gene transfer with adeno-associated virus (AAV) vectors expressing secretable GAA with long-term ERT. Liver expression of GAA results in enhanced pharmacokinetics and uptake of the enzyme in peripheral tissues compared to ERT. Combination of gene transfer with pharmacological chaperones boosts GAA bioavailability, resulting in improved rescue of the PD phenotype. Scale-up of hepatic gene transfer to non-human primates also successfully results in enzyme secretion in blood and uptake in key target tissues, supporting the ongoing clinical translation of the approach., Pompe disease is currently treated with enzyme replacement therapy (ERT) with recombinant human acid alpha-glucosidase (GAA). Here, the authors show hepatic-directed gene therapy with AAV vectors enhances GAA bioavailability compared with ERT, resulting in improved rescue of the disease phenotype in mice and broad enzyme distribution in mice and non-human primates.
- Published
- 2021
- Full Text
- View/download PDF
11. Mitochondrial fission process 1 (MTFP1) controls bioenergetic efficiency and prevents inflammatory cardiomyopathy and heart failure in mice
- Author
-
Timothy Wai, Erminia Donnarumma, Christoph Maack, Thibault Chaze, Quentin Giai Gianetto, Mariette Matondo, Elodie Vimont, Etienne Kornobis, Michael Kohlhaas, Maryse Moya-Nilges, Biologie mitochondriale – Mitochondrial biology, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University Clinic Würzburg, Biomics (plateforme technologique), Institut Pasteur [Paris] (IP)-Université Paris Cité (UPCité), Hub Bioinformatique et Biostatistique - Bioinformatics and Biostatistics HUB, Plateforme de Spectrométrie de Masse Protéomique - Mass Spectrometry Proteomics Platform (MSPP), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM)
- Subjects
uncoupling ,Programmed cell death ,permeability transition pore ,Cardiac fibrosis ,Chemistry ,oxidative phosphorylation ,Cardiomyopathy ,Oxidative phosphorylation ,Mitochondrion ,medicine.disease ,Cell biology ,mitochondria ,Mitochondrial permeability transition pore ,Knockout mouse ,medicine ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,Mitochondrial fission ,cardiomyopathy - Abstract
Mitochondria are paramount to the metabolism and survival of cardiomyocytes. Here we show that Mitochondrial Fission Process 1 (MTFP1) is essential for cardiac structure and function. Constitutive knockout of cardiomyocyte MTFP1 in mice resulted in adult-onset dilated cardiomyopathy (DCM) characterized by sterile inflammation and cardiac fibrosis that progressed to heart failure and middle-aged death. Failing hearts from cardiomyocyte-restricted knockout mice displayed a general decline in mitochondrial gene expression and oxidative phosphorylation (OXPHOS) activity. Pre-DCM, we observed no defects in mitochondrial morphology, content, gene expression, OXPHOS assembly nor phosphorylation dependent respiration. However, knockout cardiac mitochondria displayed reduced membrane potential and increased non-phosphorylation dependent respiration, which could be rescued by pharmacological inhibition of the adenine nucleotide translocase ANT. Primary cardiomyocytes from pre-symptomatic knockout mice exhibited normal excitation-contraction coupling but increased sensitivity to programmed cell death (PCD), which was accompanied by an opening of the mitochondrial permeability transition pore (mPTP). Intriguingly, mouse embryonic fibroblasts deleted for Mtfp1 recapitulated PCD sensitivity and mPTP opening, both of which could be rescued by pharmacological or genetic inhibition of the mPTP regulator Cyclophilin D. Collectively, our data demonstrate that contrary to previous in vitro studies, the loss of the MTFP1 promotes mitochondrial uncoupling and increases cell death sensitivity, causally mediating pathogenic cardiac remodeling.
- Published
- 2021
- Full Text
- View/download PDF
12. InDeep: 3D fully convolutional neural networks to assist in silico drug design on protein-protein interactions
- Author
-
Maryse Moya Nilges, A. Moine-Franel, Luis Checa Ruano, Guillaume Bouvier, Vincent Mallet, Karen Druart, Olivier Sperandio, Bioinformatique structurale - Structural Bioinformatics, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre de Bioinformatique (CBIO), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Collège Doctoral, Sorbonne Université (SU), V.M. is recipient of a doctoral fellowship from the INCEPTION project [PIA/ANR-16-CONV-0005] and benefits from support from the CRI through ‘Ecole Doctorale FIRE—Programme Bettencourt’., We thank IBM for their sponsorship for the optimization of the hyper-parameters. In particular, we thank Jean Armand Broyelle, Maxime Deloche and Xavier Vasquez for their expert support. We are grateful to the Institut Pasteur and the CNRS for their continued support for our research. We also thank Arnaud Blondel for feedback and discussions., and ANR-16-CONV-0005,INCEPTION,Institut Convergences pour l'étude de l'Emergence des Pathologies au Travers des Individus et des populatiONs(2016)
- Subjects
Drug ,Computer science ,Drug discovery ,business.industry ,Deep learning ,In silico ,media_common.quotation_subject ,Computational biology ,Convolutional neural network ,Protein–protein interaction ,[INFO]Computer Science [cs] ,Artificial intelligence ,business ,Host protein ,media_common - Abstract
MotivationProtein-protein interactions (PPIs) are key elements in numerous biological pathways and the subject of a growing number of drug discovery projects including against infectious diseases. Designing drugs on PPI targets remains a difficult task and requires extensive efforts to qualify a given interaction as an eligible target. To this end, besides the evident need to determine the role of PPIs in disease-associated pathways and their experimental characterization as therapeutics targets, prediction of their capacity to be bound by other protein partners or modulated by future drugs is of primary importance.ResultsWe present InDeep, a tool for predicting functional binding sites within proteins that could either host protein epitopes or future drugs. Leveraging deep learning on a curated data set of PPIs, this tool can proceed to enhanced functional binding site predictions either on experimental structures or along molecular dynamics trajectories. The benchmark of InDeep demonstrates that our tool outperforms state of the art ligandable binding sites predictors when assessing PPI targets but also conventional targets. This offers new opportunities to assist drug design projects on PPIs by identifying pertinent binding pockets at or in the vicinity of PPI interfaces.AvailabilityThe tool is available on GitHub3 along with a PyMol plugin for visualization. Predictions of InDeep can be consulted at iPPI-DB4
- Published
- 2021
- Full Text
- View/download PDF
13. Multifaceted modes of action of the anticancer probiotic Enterococcus hirae
- Author
-
Marion Leduc, Didier Raoult, Laura Mondragón, Kristina Iribarren, Anne-Gaëlle Goubet, Diane Derrien, Satoru Yonekura, Noélie Bossut, Valerio Iebba, Nicola Segata, Guo Chen, Ivo G. Boneca, Lisa Derosa, Adrien Joseph, Fabrice Andre, Sylvère Durand, Aurélie Fluckiger, Maryam Tidjani Alou, Fanny Aprahamian, Richard J. Wheeler, Maryse Moya-Nilges, Eugenie Pizzato, Bo Qu, Guido Kroemer, Oliver Kepp, Nicolas Pons, Romain Daillère, Fabien Lemaitre, Laurence Zitvogel, Department of Radiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France, Faculté de Médecine Paris-Saclay, AP-HP Hôpital Bicêtre (Le Kremlin-Bicêtre)-Université Paris-Saclay, Immunologie anti-tumorale et immunothérapie des cancers (ITIC), Institut Gustave Roussy (IGR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay, Biologie et Génétique de la Paroi bactérienne - Biology and Genetics of Bacterial Cell Wall, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Shanghai Jiao Tong University [Shanghai], Institut Gustave Roussy (IGR), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), Ligue Nationale Contre le Cancer - Paris, Ligue Nationnale Contre le Cancer, UMR 1015 Immunologie des tumeurs et immunothérapie contre le cancer (ITIC), Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), Institut Pasteur [Paris], MetaGenoPolis (MGP (US 1367)), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Trento [Trento], Microbes évolution phylogénie et infections (MEPHI), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Université de Paris (UP), Hôpital Européen Georges Pompidou [APHP] (HEGP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO), Karolinska University Hospital [Stockholm], Fondation pour la Recherche Médicale, Ligue contre le Cancer (équipes labellisées), Leducq Foundation, Seerave Foundation, SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE), SIRIC Cancer Research and Personalized Medicine (CARPEM), Fondation ARC pour la Recherche sur le Cancer, Région Ile-de-France, Chancellerie des universités de Paris (Legs Poix), FRM, European Research Area Network on Cardiovascular Diseases (ERA-CVD, MINOTAUR), Gustave Roussy Odyssea, Fondation Carrefour, High-end Foreign Expert Program in China: GDW20171100085 and GDW20181100051, Institut National du Cancer (INCA) France, Inserm (HTE), Institut Universitaire de France, ANR-10-COHO-0004,CANTO,Etude des toxicités chroniques des traitements anticancéreux chez les patientes porteuses cancer(2010), ANR-18-IDEX-0001,Université de Paris,Université de Paris(2018), ANR-16-RHUS-0008,LUMIERE,LUMIERE(2016), European Project: 680969,H2020,H2020-HCO-2015,ERA-CVD(2015), European Project: 825410, H2020-EU.3.1., H2020-EU.3.1.2.,ONCOBIOME (2019), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Ligue Nationale Contre le Cancer (LNCC), Institut Pasteur [Paris] (IP), Université Paris Cité (UPCité), Goubet, A. -G., Wheeler, R., Fluckiger, A., Qu, B., Lemaitre, F., Iribarren, K., Mondragon, L., Tidjani Alou, M., Pizzato, E., Durand, S., Derosa, L., Aprahamian, F., Bossut, N., Moya-Nilges, M., Derrien, D., Chen, G., Leduc, M., Joseph, A., Pons, N., Le Chatelier, E., Segata, N., Yonekura, S., Iebba, V., Kepp, O., Raoult, D., Andre, F., Kroemer, G., Boneca, I. G., Zitvogel, L., Daillere, R., Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPC), Université Paris Cité (UPC), Immunologie des tumeurs et immunothérapie (UMR 1015), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Gustave Roussy (IGR)-Université Paris-Sud - Paris 11 (UP11), Université Paris-Saclay, Institut Hospitalier Universitaire Méditerranée Infection (IHU Marseille), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), and European Project: 825410,ONCOBIOME
- Subjects
0301 basic medicine ,medicine.medical_treatment ,[SDV]Life Sciences [q-bio] ,microbiome ,law.invention ,Probiotic ,Mice ,0302 clinical medicine ,Cancer immunotherapy ,Enterococcus hirae ,law ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Neoplasms ,ComputingMilieux_MISCELLANEOUS ,[SDV.MHEP.ME]Life Sciences [q-bio]/Human health and pathology/Emerging diseases ,CD137 ,3. Good health ,Bifidobacterium animalis ,Anti-Bacterial Agents ,030220 oncology & carcinogenesis ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Female ,immunotherapy ,Immunotherapy ,microbiota ,cancer ,tumor ,probiotic ,intratumoral IFNγ ,Biology ,Article ,Microbiology ,03 medical and health sciences ,Memory T Cells ,[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system ,medicine ,Animals ,[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/Parasitology ,Microbiome ,Molecular Biology ,Probiotics ,Autophagy ,Cell Biology ,biology.organism_classification ,medicine.disease ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Gastrointestinal Microbiome ,Mice, Inbred C57BL ,030104 developmental biology ,Dysbiosis - Abstract
International audience; A deviated repertoire of the gut microbiome predicts resistance to cancer immunotherapy. Enterococcus hirae compensated cancer-associated dysbiosis in various tumor models. However, the mechanisms by which E. hirae restored the efficacy of cyclophosphamide administered with concomitant antibiotics remain ill defined. Here, we analyzed the multifaceted modes of action of this anticancer probiotic. Firstly, E. hirae elicited emigration of thymocytes and triggered systemic and intratumoral IFN gamma-producing and CD137-expressing effector memory T cell responses. Secondly, E. hirae activated the autophagy machinery in enterocytes and mediated ATG4B-dependent anticancer effects, likely as a consequence of its ability to increase local delivery of polyamines. Thirdly, E. hirae shifted the host microbiome toward a Bifidobacteria-enriched ecosystem. In contrast to the live bacterium, its pasteurized cells or membrane vesicles were devoid of anticancer properties. These pleiotropic functions allow the design of optimal immunotherapies combining E. hirae with CD137 agonistic antibodies, spermidine, or Bifidobacterium animalis. We surmise that immunological, metabolic, epithelial, and microbial modes of action of the live E. hirae cooperate to circumvent primary resistance to therapy.
- Published
- 2021
- Full Text
- View/download PDF
14. A filamentous archaeal virus is enveloped inside the cell and released through pyramidal portals
- Author
-
Mart Krupovic, David Prangishvili, Diana P. Baquero, Maryse Moya-Nilges, Martin Sachse, Anastasia D. Gazi, Stefan Schouten, Junfeng Liu, Christine Schmitt, Virologie des archées - Archaeal Virology, Université Paris Cité (UPCité)-Microbiologie Intégrative et Moléculaire (UMR6047), Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), Institut Pasteur [Paris] (IP), Royal Netherlands Institute for Sea Research (NIOZ), This work was supported by l’Agence Nationale de la Recherche (Grant ANR-17-CE15-0005-01) and Emergence(s) project from Ville de Paris (to M.K.). D.P.B. was part of the Pasteur–Paris University International PhD Program, which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 665807. The Unit of Techology & Service Ultrastructural BioImaging is a member facility of France BioImaging (ANR-10-INSB-0004)., We would like to thank Thibault Chaze and Mariette Matondo (Proteomics Platform, Institut Pasteur) for help with the proteomics and Anchelique Mets (Royal Netherlands Institute for Sea Research) for support with lipid analysis. We are also grateful for the helpful discussions and support provided by Jacomine Krijnse-Locker., ANR-17-CE15-0005,ENVIRA,Remodelage de la membrane cytoplasmique par les virus enveloppés d'archées(2017), ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), European Project: 665807,H2020,H2020-MSCA-COFUND-2014,PASTEURDOC(2015), and Institut Pasteur [Paris]
- Subjects
Cytoplasm ,Electron Microscope Tomography ,Viral protein ,archaeal viruses ,viruses ,virus-associated pyramids ,virus assembly ,medicine.disease_cause ,Virus ,Lipothrixviridae ,Sulfolobus ,Viral Proteins ,03 medical and health sciences ,Viral envelope ,Escherichia coli ,medicine ,030304 developmental biology ,0303 health sciences ,Budding ,Multidisciplinary ,biology ,030306 microbiology ,Saccharolobus ,Virion ,virus egress ,Archaeal Viruses ,Biological Sciences ,biology.organism_classification ,hyperthermophilic archaea ,Cell biology ,Host-Pathogen Interactions ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,cell lysis ,Archaea - Abstract
The majority of viruses infecting hyperthermophilic archaea display unique virion architectures and are evolutionarily unrelated to viruses of bacteria and eukaryotes. The lack of relationships to other known viruses suggests that the mechanisms of virus–host interaction in Archaea are also likely to be distinct. To gain insights into archaeal virus–host interactions, we studied the life cycle of the enveloped, ∼2-μm-longSulfolobus islandicus filamentous virus (SIFV), a member of the family Lipothrixviridae infecting a hyperthermophilic and acidophilic archaeon Saccharolobus islandicus LAL14/1. Using dual-axis electron tomography and convolutional neural network analysis, we characterize the life cycle of SIFV and show that the virions, which are nearly two times longer than the host cell diameter, are assembled in the cell cytoplasm, forming twisted virion bundles organized on a nonperfect hexagonal lattice. Remarkably, our results indicate that envelopment of the helical nucleocapsids takes place inside the cell rather than by budding as in the case of most other known enveloped viruses. The mature virions are released from the cell through large (up to 220 nm in diameter), six-sided pyramidal portals, which are built from multiple copies of a single 89-amino-acid-long viral protein gp43. The overexpression of this protein in Escherichia coli leads to pyramid formation in the bacterial membrane. Collectively, our results provide insights into the assembly and release of enveloped filamentous viruses and illuminate the evolution of virus–host interactions in Archaea.
- Published
- 2021
- Full Text
- View/download PDF
15. Gene therapy with secreted acid alpha-glucosidase rescues Pompe disease in a novel mouse model with early-onset spinal cord and respiratory defects
- Author
-
M. Biferi, Bernard Gjata, Nicolas Guerchet, Laetitia van Wittenberghe, Fanny Collaud, N. Danièle, Manuel Gómez, Severine Charles, Pauline Sellier, M. Cohen-Tannoudji, Guillaume Tanniou, Federico Mingozzi, Jacomina Krijnse-Locker, Umut Cagin, Maryse Moya-Nilges, Pasqualina Colella, Marcelo Simon-Sola, Approches génétiques intégrées et nouvelles thérapies pour les maladies rares (INTEGRARE), Université d'Évry-Val-d'Essonne (UEVE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay-Généthon, Centre de Recherche en Myologie, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Thérapie des maladies du muscle strié, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Institut Pasteur [Paris], Funding: This work was supported by Genethon, the French Muscular Dystrophy Association (AFM), the European Commission (grant nos. 667751, 617432, and 797144), and Spark Therapeutics., European Project: 667751,H2020,H2020-PHC-2015-two-stage,MYOCURE(2016), European Project: 617432,EC:FP7:ERC,ERC-2013-CoG,MOMAAV(2014), Centre de recherche en Myologie – U974 SU-INSERM, Institut Pasteur [Paris] (IP), ANR-16-CE92-0008,membrane dynamics,Rupture et réparation membranaire : stratégies d'assemblage virale(2016), French Muscular Dystrophy Association, European Union, European Research Council, and Unión Europea
- Subjects
Male ,0301 basic medicine ,Genetic enhancement ,[SDV]Life Sciences [q-bio] ,Gene Expression ,lcsh:Medicine ,Mice ,0302 clinical medicine ,Transduction, Genetic ,Medicine ,Respiratory function ,Muscular dystrophy ,Respiratory system ,Mice, Knockout ,Motor Neurons ,lcsh:R5-920 ,Spinal cord ,Glycogen Storage Disease Type II ,Homozygote ,Gene Transfer Techniques ,Pompe disease ,AAV ,General Medicine ,Dependovirus ,Prognosis ,Immunohistochemistry ,3. Good health ,Phenotype ,Treatment Outcome ,medicine.anatomical_structure ,030220 oncology & carcinogenesis ,Acid alpha-glucosidase ,Muscle ,medicine.symptom ,lcsh:Medicine (General) ,Glycogen ,Research Paper ,congenital, hereditary, and neonatal diseases and abnormalities ,Genetic Vectors ,General Biochemistry, Genetics and Molecular Biology ,Mouse model ,03 medical and health sciences ,Animals ,Muscle Strength ,Muscle, Skeletal ,Alleles ,business.industry ,lcsh:R ,Muscle weakness ,Skeletal muscle ,nutritional and metabolic diseases ,alpha-Glucosidases ,Genetic Therapy ,medicine.disease ,Disease Models, Animal ,030104 developmental biology ,Immunology ,business - Abstract
Pompe disease (PD) is a neuromuscular disorder caused by deficiency of acidalpha-glucosidase (GAA), leading to motor and respiratory dysfunctions. Available Gaa knock-out (KO) mouse models do not accurately mimic PD, particularly its highly impaired respiratory phenotype. Here we developed a new mouse model of PD crossing Gaa KOB6;129 with DBA2/J mice. We subsequently treated Gaa KODBA2/J mice with adeno-associated virus (AAV) vectors expressing a secretable form of GAA (secGAA). Male Gaa KODBA2/J mice present most of the key features of the human disease, including early lethality, severe respiratory impairment, cardiac hypertrophy and muscle weakness. Transcriptome analyses of Gaa KODBA2/J, compared to the parental Gaa KOB6;129 mice, revealed a profoundly impaired gene signature in the spinal cord and a similarly deregulated gene expression in skeletal muscle. Muscle and spinal cord transcriptome changes, biochemical defects, respiratory and muscle function in the Gaa KODBA2/J model were significantly improved upon gene therapy with AAV vectors expressing secGAA. These data show that the genetic background impacts on the severity of respiratory function and neuroglial spinal cord defects in the Gaa KO mouse model of PD. Our findings have implications for PD prognosis and treatment, show novel molecular pathophysiology mechanisms of the disease and provide a unique model to study PD respiratory defects, which majorly affect patients. This work was supported by Genethon, the French Muscular Dystrophy Association (AFM), the European Commission (grant nos. 667751, 617432, and 797144), and Spark Therapeutics. This work was supported by Genethon and the French Muscular Dystrophy Association (AFM, to F.M.). It was also supported by the European Union’s research and innovation program under grant agreement no. 667751 (to F.M.), the European Research Council Consolidator Grant under grant agreement no. 617432 (to F.M.), Marie Skodowska-Curie Actions Individual Fellowship (MSCA-IF) grant agreement no. 797144 (to U.C.), and by Spark Therapeutics under a sponsored research agreement. Sí
- Published
- 2020
- Full Text
- View/download PDF
16. Dynamic imaging reveals surface exposure of virulent Leishmania amastigotes during pyroptosis of infected macrophages
- Author
-
Thierry Blisnick, Gerald F. Späth, Phillipe Bastin, Hervé Lecoeur, Pascale Pescher, Thibault Rosazza, Maryse Moya-Nilges, Eric Prina, Parasitologie moléculaire et Signalisation / Molecular Parasitology and Signaling, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Pasteur International Mixed Unit 'Inflammation and Leishmania infection' (IMU-InflaLeish), Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Innate Immunity [China], Institut Pasteur de Shanghai, Académie des Sciences de Chine - Chinese Academy of Sciences (IPS-CAS), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut Pasteur de Shanghai, Académie des Sciences de Chine - Chinese Academy of Sciences (IPS-CAS), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Leishmania Lab [Corée du sud], Institut Pasteur Korea - Institut Pasteur de Corée, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut Pasteur Korea - Institut Pasteur de Corée, Réseau International des Instituts Pasteur (RIIP), Biologie cellulaire des Trypanosomes - Trypanosome Cell Biology, Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), Institut Pasteur [Paris], This project was supported by i) a fund of the Institut Pasteur International Direction (International Mixed Unit ‘Inflammation and Leishmania infection’), ii) the French National Research Agency (ANR-10-INSB-04-01, Investments for the Future), the Conseil de la Region Ile-de-France (program Sesame 2007, project Imagopole, S. Shorte) and the Fondation Française pour la Recherche Médicale (Programme Grands Equipements) (UtechS PBI/C2RT), iii) a French Government Investissement d’Avenir programme, Laboratoire d’Excellence'Integrative Biology of Emerging Infectious Diseases' (ANR-10-LABX-62-IBEID) (Trypanosome Cell Biology and Molecular Parasitology and Signaling Units), and iv) a fund from Institut Pasteur (PTR 496), ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Innate Immunity [China], and Institut Pasteur [Paris] (IP)
- Subjects
Macrophage ,Biology ,Microbiology ,03 medical and health sciences ,0302 clinical medicine ,Extracellular ,[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/Parasitology ,Amastigote ,030304 developmental biology ,Infectivity ,Leishmania ,0303 health sciences ,Single-cell ,real-time imaging ,Virulence ,Intracellular parasite ,pyroptosis ,Pyroptosis ,high-content ,Cell Biology ,biology.organism_classification ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,030217 neurology & neurosurgery ,Intracellular - Abstract
International audience; Leishmania spp are obligate intracellular parasites that infect phagocytes, notably macrophages. No information is available on how Leishmania parasites respond to pyroptosis of their host cell, known to limit microbial infection. Here, we analyzed the pyroptotic process and the fate of intracellular amastigotes at the single cell level using high-content, real-time imaging. Bone marrow-derived macrophages were infected with virulent L. amazonensis amastigotes and sequentially treated with lipopolysaccharide and adenosine triphosphate for pyroptosis induction. Real-time monitoring identified distinct pyroptotic phases, including rapid decay of the parasitophorous vacuole (PV), progressive cell death, and translocation of the luminal PV membrane to the cell surface in 40% of macrophages, resulting in the extracellular exposure of amastigotes that remained anchored to PV membranes. Electron microscopy analyses revealed an exclusive polarized orientation of parasites, with the anterior pole exposed toward the extracellular milieu, and the parasite posterior pole attached to the PV membrane. Exposed parasites retain their full infectivity towards naïve macrophages suggesting that host cell pyroptosis may contribute to parasite dissemination.
- Published
- 2020
- Full Text
- View/download PDF
17. Defective lytic transglycosylase disrupts cell morphogenesis by hindering cell wall de-O-acetylation in Neisseria meningitidis
- Author
-
Joseph P. Dillard, Ahmed Haouz, Muhamed-Kheir Taha, William P. Robins, Christian Malosse, Ala-Eddine Deghmane, Julia Chamot-Rooke, Maryse Moya Nilges, Ryan E. Schaub, Ivo G. Boneca, Ignacio Santecchia, Richard J. Wheeler, Allison H. Williams, Samia Hicham, Biologie et Génétique de la Paroi bactérienne - Biology and Genetics of Bacterial Cell Wall, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Immunologie anti-tumorale et immunothérapie des cancers (ITIC), Institut Gustave Roussy (IGR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay, Infections Bactériennes Invasives, Institut Pasteur [Paris], Université Paris Descartes - Paris 5 (UPD5), Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), Spectrométrie de Masse pour la Biologie – Mass Spectrometry for Biology (UTechS MSBio), Institut Pasteur [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Cristallographie (Plateforme) - Crystallography (Platform), Harvard Medical School [Boston] (HMS), European Molecular Biology Organization (ALTF 732-2010), European Research Council (PGN from SHAPE to VIR 202283), Fondation pour la Recherche Médicale (DBF20160635726), Institut Carnot-Pasteur (Maladies Infectious fellowship), Institut Carnot Pasteur Microbes and Santé, Fondation pour la Recherche Médicale (FDT201805005258)AHW was supported by an EMBO long-term fellowship (ALTF 732–2010) and an Institut Carnot-Pasteur Maladies Infectious fellowship. This work was supported by an ERC starting grant (PGN from SHAPE to VIR 202283) and a Fondation pour la recherche médicale (FRM) grant Programme d’Urgence (DBF20160635726) to IGB. This study received funding from the French Government′s Investissement d′Avenir program, Laboratoire d′Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR- 10-LABX-62-IBEID). IS was supported by the Institut Carnot Pasteur Microbes and Santé given to the Pasteur-Paris University PhD program and the ‘Fin de these de science’ number FDT201805005258 granted by 'Fondation pour la recherche médicale (FRM). The UtechS Photonic BioImaging (Imagopole), C2RT, Institut Pasteur was supported by the French National Research Agency (France BioImaging, ANR-10–INSB–04, Investments for the Future)., We acknowledge the synchrotron beamline staff (PROXIMA-1 at SOLEIL and X06DA at SLS) for their assistance. We are extremely grateful to Frederick Saul, Patrick Weber and Marco Bellinzoni for their constant helpful guidance, advice and assistance. We thank Dr. Antoine Forget for the advice on and help with figure presentations., ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP), and Institut Pasteur [Paris] (IP)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,cell division ,Cell division ,QH301-705.5 ,Science ,infectious disease ,030106 microbiology ,Neisseria meningitidis ,peptidoglycan ,General Biochemistry, Genetics and Molecular Biology ,Bacterial cell structure ,Cell wall ,Lytic transglycosylase ,03 medical and health sciences ,chemistry.chemical_compound ,Cell Wall ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Catalytic Domain ,Morphogenesis ,Amino Acid Sequence ,Biology (General) ,X-ray crystallography ,chemistry.chemical_classification ,Microbiology and Infectious Disease ,General Immunology and Microbiology ,biology ,Cell morphogenesis ,General Neuroscience ,microbiology ,E. coli ,Active site ,Glycosyltransferases ,General Medicine ,Cell biology ,030104 developmental biology ,Enzyme ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,chemistry ,Lytic cycle ,cell separation ,biology.protein ,Medicine ,Peptidoglycan ,Research Article ,Protein Binding - Abstract
Lytic transglycosylases (LT) are enzymes involved in peptidoglycan (PG) remodeling. However, their contribution to cell-wall-modifying complexes and their potential as antimicrobial drug targets remains unclear. Here, we determined a high-resolution structure of the LT, an outer membrane lipoprotein from Neisseria species with a disordered active site helix (alpha helix 30). We show that deletion of the conserved alpha-helix 30 interferes with the integrity of the cell wall, disrupts cell division, cell separation, and impairs the fitness of the human pathogen Neisseria meningitidis during infection. Additionally, deletion of alpha-helix 30 results in hyperacetylated PG, suggesting this LtgA variant affects the function of the PG de-O-acetylase (Ape 1). Our study revealed that Ape 1 requires LtgA for optimal function, demonstrating that LTs can modulate the activity of their protein-binding partner. We show that targeting specific domains in LTs can be lethal, which opens the possibility that LTs are useful drug-targets., eLife digest Bacteria are surrounded by a tough yet flexible wall that protects the cell and serves as an anchor for several of the cell’s structures. This cell wall contains a large mesh-like molecule called peptidoglycan made of many repeated building blocks. When a bacterial cell divides in two, it needs to make more of this material. Making peptidoglycan involves two different sets of enzymes working together: “polymerases” are the enzymes that link the individual building blocks to peptidoglycan, one after the other; while “lytic transglycosylases” are enzymes that modify the peptidoglycan to create space for the addition of new building blocks and for assemblies of proteins that must span the cell wall. Lytic transglycosylases are known to assemble with other proteins and enzymes to form the cell’s peptidoglycan-modifying machinery, but it was not clear exactly what purpose they serve within these “enzyme complexes”. It was also unclear whether these enzymes would be good targets for new antibiotics. To help answer these questions, Williams et al. looked at a lytic transglycoslyase called LtgA. This enzyme is originally from Neisseria meningitidis, a bacterium that can cause meningitis and life-threatening sepsis in humans. Williams et al. discovered that part of the enzyme’s active site – the region of an enzyme where the chemical reaction takes – can switch from an ordered helix to a disordered, flexible loop. Bacteria were then genetically engineered to make a version of the enzyme that lacked this helix. These bacteria had weaker cell walls and were deformed; they were also less able to grow and divide, both in the laboratory and in a mouse model of infection. Further analysis showed that the deletion of the helix from the enzyme resulted in the peptidoglycan being modified much more than normal, which could likely explain their reduced virulence. Williams et al. also found that deleting the helix from LtgA interfered with the activity of a protein that interacts with this enzyme, called Ape1, which also contributed to the fragility of the cell wall. This shows that lytic transglycosylases assembled into enzyme complexes can alter the activities of other proteins in the complex. Together these findings show that researchers could target one enzyme in a complex in bacteria, and disrupt the activity of other proteins in that complex. This highlights the possibility of considering enzyme complexes as useful targets for new drugs, which is important considering the current problem of antibiotic resistance.
- Published
- 2020
- Full Text
- View/download PDF
18. Dynamic High-Content Imaging Reveals Surface Exposure of Virulent Leishmania Amastigotes in Infected Macrophages Undergoing Pyroptosis
- Author
-
Eric Prina, Thibault Rosazza, Hervé Lecoeur, G. F. Spaeth, Philippe Bastin, Maryse Moya-Nilges, Pascale Pescher, and Thierry Blisnick
- Subjects
Cytolysis ,chemistry.chemical_compound ,Lipopolysaccharide ,Chemistry ,Intracellular parasite ,Extracellular ,Pyroptosis ,medicine ,Inflammasome ,Amastigote ,Intracellular ,Microbiology ,medicine.drug - Abstract
Leishmania spp are obligate intracellular parasites that infect vertebrate phagocytes, notably macrophages. We previously reported that Leishmania amazonensis (L. am) subvert the host cell pro-inflammatory response by dampening the macrophage NLRP3 inflammasome. No information is available on how Leishmania infection affects inflammatory cell death termed pyroptosis, known to limit microbial infection. Here, we provide first evidence that L. amazonensis-infected macrophages can undergo pyroptosis when subjected to pro-inflammatory stimuli. We analyzed the dynamics of the pyroptotic process and the fate of intracellular amastigotes at the single cell level using spinning disk confocal microscopy and high-content, real-time imaging. Bone marrow-derived macrophages (BMDMs) were infected with L. am amastigotes isolated from footpad lesions and sequentially treated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) for canonical NLRP3 inflammasome priming and activation. Real-time monitoring was performed for 240 min post ATP addition. Longitudinal analyses revealed distinct phases of the pyroptotic process, including rapid decay of the parasitophorous vacuole (PV) as monitored by the pH-sensitive lysotracker fluid phase marker, progressive decrease in macrophage viability as monitored by accumulation of the nuclear dye YO-PRO-1, followed by translocation of the luminal PV membrane to the cell surface observed for 40% of macrophages, resulting in the extracellular exposure of amastigotes that remained anchored to the PV membrane. Scanning and transmission electron microscopy analyses revealed a highly polarized orientation of parasites with exclusive exposure of the anterior pole toward the extracellular milieu, and an attachment site forming a potential biological junction between the parasite posterior pole and the PV membrane. We showed that the exposed parasites are resistant to the cytolytic host cell activities linked to pyroptosis and retain their full infectious potential in reinfection experiments using naïve macrophages. Together these data uncover a novel Leishmania immune subversion strategy that may allow stealthy parasite dissemination via the uptake of pyroptotic host debris by uninfected phagocytes.
- Published
- 2020
- Full Text
- View/download PDF
19. Dynamic imaging reveals surface exposure of virulent
- Author
-
Thibault, Rosazza, Hervé, Lecoeur, Thierry, Blisnick, Maryse, Moya-Nilges, Pascale, Pescher, Phillipe, Bastin, Eric, Prina, and Gerald F, Späth
- Subjects
Leishmania ,Mice ,Mice, Inbred BALB C ,Macrophages ,Leishmania mexicana ,Pyroptosis ,Animals ,Cells, Cultured - Published
- 2020
20. GPI Anchored Proteins in Aspergillus fumigatus and Cell Wall Morphogenesis
- Author
-
Michael Blatzer, Isabelle Mouyna, Marketa Samalova, Jean-Paul Latgé, Michael Bromley, Paul Carr, Maryse Moya-Nilges, Aspergillus, Institut Pasteur [Paris], University of Manchester [Manchester], Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), This research was funded by l’Agence Nationale pour la Recherche (AfuInf ANR-16-CE92-0039), la Fondation pour la Recherche Médicale (DEQ 20150331722 LATGE Equipe FRM 2015) and the AIC (Action Incitative Ciblée) grant of Pasteur Institute. This work was also supported by the Wellcome trust grant 208396/Z/17/Z to MB., ANR-16-CE92-0039,AfuInf,Protéome and polysaccharidome d'Aspergillus fumigatus lors des étapes précoces de l'infection(2016), and Institut Pasteur [Paris] (IP)
- Subjects
0303 health sciences ,biology ,030306 microbiology ,Chemistry ,Mutant ,Biofilm ,Morphogenesis ,biology.organism_classification ,Aspergillus fumigatus ,Cell biology ,carbohydrates (lipids) ,Cell wall ,03 medical and health sciences ,Glycolipid ,Extracellular ,lipids (amino acids, peptides, and proteins) ,Cell adhesion ,[SDV.MP.MYC]Life Sciences [q-bio]/Microbiology and Parasitology/Mycology ,030304 developmental biology - Abstract
International audience; Glycosylphosphatidylinositol (GPI) anchored proteins are a class of proteins attached to the extracellular leaflet of the plasma membrane via a post-translational modification, the glycolipid anchor. GPI anchored proteins are expressed in all eukaryotes, from fungi to plants and animals. They display very diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism, and immune response. In this review, we investigated for the first time an exhaustive list of all the GPI anchored proteins present in the Aspergillus fumigatus genome. An A. fumigatus mutant library of all the genes that encode in silico identified GPI anchored proteins has been constructed and the phenotypic analysis of all these mutants has been characterized including their growth, conidial viability or morphology, adhesion and the ability to form biofilms. We showed the presence of different fungal categories of GPI anchored proteins in the A. fumigatus genome associated to their role in cell wall remodeling, adhesion, and biofilm formation.
- Published
- 2020
- Full Text
- View/download PDF
21. Rescue of Advanced Pompe Disease in Mice with Hepatic Expression of Secretable Acid α-Glucosidase
- Author
-
Severine Charles, Catalina Abad, Nathalie Daniele, Laetitia van Wittenberghe, Jacomina Krijnse-Locker, Maryse Moya-Nilges, Umut Cagin, Marcelo Simon Sola, Fanny Collaud, Bernard Gjata, Francesco Puzzo, Pasqualina Colella, Nicolas Guerchet, Manuel Gómez, Giuseppe Ronzitti, Olivier Boyer, Pauline Sellier, Federico Mingozzi, Genethon (Francia), French Muscular Dystrophy Association, Spark Therapeutics (Estados Unidos), Unión Europea, European Research Council, Ministerio de Ciencia e Innovación (España), Approches génétiques intégrées et nouvelles thérapies pour les maladies rares (INTEGRARE), Université d'Évry-Val-d'Essonne (UEVE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay-Généthon, Sorbonne Université (SU), Centro Nacional de Investigaciones Cardiovasculares Carlos III [Madrid, Spain] (CNIC), Instituto de Salud Carlos III [Madrid] (ISC), Institute for Research and Innovation in Biomedicine (IRIB), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), CCSD, Accord Elsevier, Institut Pasteur [Paris] (IP), Genethon, French Muscular Dystro-phy Association, Spark Therapeutics, European Union, and ANR-16-CE92-0008,membrane dynamics,Rupture et réparation membranaire : stratégies d'assemblage virale(2016)
- Subjects
Male ,liver gene transfer ,[SDV]Life Sciences [q-bio] ,Genetic enhancement ,Transcriptome ,secretable GAA ,chemistry.chemical_compound ,transcriptomics ,Mice ,0302 clinical medicine ,Drug Discovery ,chemistry.chemical_classification ,Mice, Knockout ,0303 health sciences ,Secretory Pathway ,Glycogen ,Glycogen Storage Disease Type II ,Pompe disease ,AAV ,Dependovirus ,Phenotype ,gene therapy ,Pompe mouse ,3. Good health ,[SDV] Life Sciences [q-bio] ,medicine.anatomical_structure ,Treatment Outcome ,Liver ,030220 oncology & carcinogenesis ,advanced disease ,Molecular Medicine ,Original Article ,Signal Transduction ,congenital, hereditary, and neonatal diseases and abnormalities ,Genetic Vectors ,Biology ,Transfection ,Virus ,03 medical and health sciences ,Genetics ,medicine ,Animals ,Muscle, Skeletal ,Molecular Biology ,Gene ,030304 developmental biology ,Pharmacology ,Skeletal muscle ,nutritional and metabolic diseases ,alpha-Glucosidases ,Genetic Therapy ,Molecular biology ,Disease Models, Animal ,Enzyme ,chemistry ,Lysosomes - Abstract
Pompe disease is a neuromuscular disorder caused by disease-associated variants in the gene encoding for the lysosomal enzyme acid α-glucosidase (GAA), which converts lysosomal glycogen to glucose. We previously reported full rescue of Pompe disease in symptomatic 4-month-old Gaa knockout (Gaa−/−) mice by adeno-associated virus (AAV) vector-mediated liver gene transfer of an engineered secretable form of GAA (secGAA). Here, we showed that hepatic expression of secGAA rescues the phenotype of 4-month-old Gaa−/− mice at vector doses at which the native form of GAA has little to no therapeutic effect. Based on these results, we then treated severely affected 9-month-old Gaa−/− mice with an AAV vector expressing secGAA and followed the animals for 9 months thereafter. AAV-treated Gaa−/− mice showed complete reversal of the Pompe phenotype, with rescue of glycogen accumulation in most tissues, including the central nervous system, and normalization of muscle strength. Transcriptomic profiling of skeletal muscle showed rescue of most altered pathways, including those involved in mitochondrial defects, a finding supported by structural and biochemical analyses, which also showed restoration of lysosomal function. Together, these results provide insight into the reversibility of advanced Pompe disease in the Gaa−/− mouse model via liver gene transfer of secGAA., Graphical Abstract, AAV vector-mediated hepatic expression of secretable GAA drives clearance of glycogen from multiple tissues, resulting in rescue of muscle function in Pompe mice with advanced pathology. Reversal of the Pompe phenotype in mice includes normalization of lysosomal parameters and mitochondrial homeostasis, which is also reflected in the muscle transcriptomics.
- Published
- 2020
- Full Text
- View/download PDF
22. Automatic building of protein atomic models from cryo-EM density maps using residue co-evolution
- Author
-
Chiara Rapisarda, Maryse Moya Nilges, Guillaume Bouvier, Riccardo Pellarin, Benjamin Bardiaux, Bioinformatique structurale - Structural Bioinformatics, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Microbiologie Fondamentale et Pathogénicité (MFP), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Microbiologie Fondamentale et Pathogénicité [Bordeaux] (MFP), and Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Difficult problem ,Physics ,0303 health sciences ,Cryo-electron microscopy ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Minimum spanning tree ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,03 medical and health sciences ,0302 clinical medicine ,Atomic theory ,Macromolecular Complexes ,Segmentation ,Pruning algorithm ,Biological system ,030217 neurology & neurosurgery ,030304 developmental biology - Abstract
Electron cryo-microscopy (cryo-EM) has emerged as a powerful method to obtain three-dimensional (3D) structures of macromolecular complexes at atomic or near-atomic resolution. However, de novo building of atomic models from near-atomic resolution (3-5 Å) cryo-EM density maps is a challenging task, in particular since poorly resolved side-chain densities hamper sequence assignment by automatic procedures at a lower resolution. Furthermore, segmentation of EM density maps into individual subunits remains a difficult problem when no three-dimensional structures of these subunits exist, or when significant conformational changes occur between the isolated and complexed form of the subunits. To tackle these issues, we have developed a graph-based method to thread most of the C-α trace of the protein backbone into the EM density map. The EM density is described as a weighted graph such that the resulting minimum spanning tree encompasses the high-density regions of the map. A pruning algorithm cleans the tree and finds the most probable positions of the C-α atoms, using side-chain density when available, as a collection of C-α trace fragments. By complementing experimental EM maps with contact predictions from sequence co-evolutionary information, we demonstrate that our approach can correctly segment EM maps into individual subunits and assign amino acids sequence to backbone traces to generate full-atom models.
- Published
- 2020
23. Author response: Defective lytic transglycosylase disrupts cell morphogenesis by hindering cell wall de-O-acetylation in Neisseria meningitidis
- Author
-
Christian Malosse, Julia Chamot-Rooke, Ivo G. Boneca, Ryan E. Schaub, Muhamed-Kheir Taha, Maryse Moya Nilges, Allison H. Williams, Joseph P. Dillard, Samia Hicham, Ignacio Santecchia, William P. Robins, Ala-Eddine Deghmane, Ahmed Haouz, and Richard J. Wheeler
- Subjects
Cell wall ,Lytic cycle ,Acetylation ,Cell morphogenesis ,Chemistry ,Neisseria meningitidis ,medicine ,medicine.disease_cause ,Cell biology - Published
- 2019
- Full Text
- View/download PDF
24. Aspergillus fumigatus exoβ(1‐3)glucanases family GH55 are essential for conidial cell wall morphogenesis
- Author
-
Jean-Paul Latgé, Isabelle Mouyna, Nicolas Millet, Martin Sachse, Maryse Moya-Nilges, Jacomina Krijnse Locker, Aspergillus, Institut Pasteur [Paris], Université Paris Diderot, Sorbonne Paris Cité, Paris, France, Université Paris Diderot - Paris 7 (UPD7), Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), This research was funded by l'Agence Nationale pour la Recherche (AfuInf ANR‐16‐CE92‐0039), la Fondation pour la Recherche Médicale (DEQ20150331722 LATGE Equipe FRM 2015), the French Government's Investissement d'Avenir program, and Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (Grant ANR‐10‐LABX‐62‐IBEID). The PhD grant has been funded by the Université Paris Diderot, Paris. The authors have no conflict of interest to declare., ANR-16-CE92-0039,AfuInf,Protéome and polysaccharidome d'Aspergillus fumigatus lors des étapes précoces de l'infection(2016), ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), and Institut Pasteur [Paris] (IP)
- Subjects
Immunology ,Morphogenesis ,conidia ,Chitin ,exoβ(1-3)glucanases ,Polysaccharide ,Microbiology ,Aspergillus fumigatus ,Conidium ,Fungal Proteins ,Cell wall ,03 medical and health sciences ,chemistry.chemical_compound ,β(1-3)glucan ,Virology ,Glycosyl ,[SDV.MP.MYC]Life Sciences [q-bio]/Microbiology and Parasitology/Mycology ,030304 developmental biology ,Glucan ,chemistry.chemical_classification ,0303 health sciences ,biology ,030306 microbiology ,Spores, Fungal ,biology.organism_classification ,Cell biology ,chemistry ,cell wall - Abstract
International audience; The cell wall of Aspergillus fumigatus is predominantly composed of polysaccharides. The central fibrillar core of the cell wall is composed of a branched β(1-3)glucan, to which the chitin and the galactomannan are covalently bound. Softening of the cell wall is an essential event during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosyl hydrolases. In this study, we characterised the role of the glycosyl hydrolase GH55 members in A. fumigatus fungal morphogenesis. We showed that deletion of the six genes of the GH55 family stopped conidial cell wall maturation at the beginning of the development process, leading to abrogation of conidial separation: the shape of conidia became ovoid, and germination was delayed. In conclusion, the reorganisation and structuring of the conidial cell wall mediated by members of the GH55 family is essential for their maturation, normal dissemination, and germination.
- Published
- 2019
- Full Text
- View/download PDF
25. Intracellular offspring released from SFB filaments are flagellated
- Author
-
Valérie Gaboriau-Routhiau, Vincent Jung, Jacomina Krijnse-Locker, Olivier Gorgette, Philippe J. Sansonetti, Céline Mulet, Nadine Cerf-Bensussan, Marion Bérard, Giulia Nigro, Ida Chiara Guerrera, Pamela Schnupf, Aurélie Couesnon, Yoshinori Umesaki, Maryse Moya-Nilges, Tatsuichiro Shima, Gyanendra P. Dubey, Audrey Salles, Iris Nkamba, Laboratory of Intestinal Immunity (Equipe Inserm U1163), Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), UFR Sciences humaines et sociales [Sociétés et Humanités] - Université Paris Cité (UFR SHS UPCité ), Université Paris Cité (UPCité), Pathogénie microbienne moléculaire, Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), Institut Pasteur [Paris] (IP), BioImagerie Photonique – Photonic BioImaging (UTechS PBI), Plateforme Protéomique Necker [SFR Necker] (PPN - 3P5), Structure Fédérative de Recherche Necker (SFR Necker - UMS 3633 / US24), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Yakult Central institute [Tokyo], Animalerie centrale (Plate-forme), Collège de France - Chaire Microbiologie et Maladies infectieuses, Collège de France (CdF (institution)), Laboratoire Interaction Hôte-Microbiote [Institut Necker Enfants Malades, Paris], Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), French National Research Agency (ANR)ANR-10-INSB-04ERC Advanced Grant DECRYPT Pasteur LabEx IBEID Doctoral fellowship ERC Advanced Grant IMMUNOBIOTA Bill and Melinda Gates Foundation Grand Challenge Grant OPP1141322Pasteur Institute Paris Descartes Université Institut National de la Santé et de la Recherche Médicale (Inserm), We are grateful to the members of the Center for Gnotobiology of the Institut Pasteur (T. Angélique, E. Maranghi, M. Jacob and M.G. Lopez Dieguez) for technical support with the gnotobiotic mice and also thank C. Schmitt and R. Tournebize for technical assistance. We thank the UTechS PBI and UBI (Center for Resources and Research in Technology, Institut Pasteur, Paris), the France-BioImaging infrastructure network supported by the ANR (ANR-10-INSB-04, Investments for the Future) and the Région Ile-de-France (programme DIM-Malinf) for the use of the Zeiss LSM 780 Elyra PS1 microscope., ANR-16-CE92-0008,membrane dynamics,Rupture et réparation membranaire : stratégies d'assemblage virale(2016), European Project: 339579,EC:FP7:ERC,ERC-2013-ADG,DECRYPT(2014), European Project: 339407,EC:FP7:ERC,ERC-2013-ADG,IMMUNOBIOTA(2014), Salles, Audrey, Decrypting signals in the crypt. - DECRYPT - - EC:FP7:ERC2014-04-01 - 2019-03-31 - 339579 - VALID, Host-microbiota interactions across the gut immune system:lessons from early onset inflammatory bowel diseases and from gnotobiotic mice - IMMUNOBIOTA - - EC:FP7:ERC2014-03-01 - 2019-02-28 - 339407 - VALID, Université Paris Cité - UFR Sciences humaines et sociales [Sociétés et Humanités] (UPCité UFR SHS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Université de Paris - Faculté des Sciences humaines et sociales [Sociétés et Humanités] (UP Faculté SHS), Université de Paris (UP), Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pasteur [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Chaire Microbiologie et Maladies infectieuses, and Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Microbiology (medical) ,Offspring ,[SDV]Life Sciences [q-bio] ,Immunology ,Biology ,Bacterial physiology ,Applied Microbiology and Biotechnology ,Microbiology ,Article ,Cell Line ,03 medical and health sciences ,Bacteria, Anaerobic ,Mice ,Immune system ,Ileum ,Bacterial development ,Genetics ,Animals ,Humans ,Intestinal Mucosa ,030304 developmental biology ,0303 health sciences ,Segmented filamentous bacterium ,030306 microbiology ,Cell Biology ,Gene Expression Regulation, Bacterial ,Bacterial host response ,Cell biology ,Rats ,[SDV] Life Sciences [q-bio] ,Toll-Like Receptor 5 ,Flagella ,Intracellular ,Ileal epithelium ,Flagellin - Abstract
International audience; The gut commensal segmented filamentous bacterium (SFB) attaches to the ileal epithelium and potently stimulates the host immune system. Using transmission electron microscopy (TEM), we show that mouse and rat SFB are flagellated above the concave tip at the unicellular intracellular offspring (IO) stage and that flagellation occurs prior to full IO differentiation and release of IOs from SFB filaments. This finding adds a missing link to the SFB life cycle.
- Published
- 2019
- Full Text
- View/download PDF
26. Mapping of Shigella flexneri’s tissue distribution and type III secretion apparatus activity during infection of the large intestine of guinea pigs
- Author
-
F-X Campbell-Valois, Martin Sachse, Giulia Nigro, Philippe J. Sansonetti, Benoit S. Marteyn, Maryse Moya-Nilges, Ellen T. Arena, Pathogénie microbienne moléculaire, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), University of Wisconsin-Madison, Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), Institut Pasteur [Paris], Architecture et Réactivité de l'ARN (ARN), Institut de biologie moléculaire et cellulaire (IBMC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Chaire Microbiologie et Maladies infectieuses, Collège de France (CdF (institution)), This work was supported by the European Research Council and Howard Hugues Medical Institute (PS) and Canadian Institute of Health Research Project Grant 159517 (FXCV)., MATHELIN, Sandra, Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pasteur [Paris] (IP), Collège de France - Chaire Microbiologie et Maladies infectieuses, and ANR-17-CE15-0012,NEUTROXIA,Effet de l'exposition des neutrophiles à l'oxygène sur leur activation et leur mort : une lame à double tranchant(2017)
- Subjects
Microbiology (medical) ,Colon ,Guinea Pigs ,Vacuole ,medicine.disease_cause ,fluorescence microscopy ,Microbiology ,Type three secretion system ,Shigella flexneri ,03 medical and health sciences ,0302 clinical medicine ,Genes, Reporter ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,medicine ,Type III Secretion Systems ,Immunology and Allergy ,Animals ,Secretion ,Shigella ,Tissue Distribution ,Intestinal Mucosa ,genetically encoded reporters ,030304 developmental biology ,Dysentery, Bacillary ,0303 health sciences ,Lamina propria ,General Immunology and Microbiology ,biology ,in vivo infection ,General Medicine ,biology.organism_classification ,Mucus ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,3. Good health ,type III secretion system ,Disease Models, Animal ,Infectious Diseases ,medicine.anatomical_structure ,Organ Specificity ,large intestine ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Female ,[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,030217 neurology & neurosurgery ,Bacteria ,Biomarkers ,Research Article - Abstract
Shigella spp. are bacterial pathogens that invade the human colonic mucosa using a type III secretion apparatus (T3SA), a proteinaceous device activated upon contact with host cells. Active T3SAs translocate proteins that carve the intracellular niche of Shigella spp. Nevertheless, the activation state of the T3SA has not been addressed in vivo. Here, we used a green fluorescent protein transcription-based secretion activity reporter (TSAR) to provide a spatio-temporal description of S. flexneri T3SAs activity in the colon of Guinea pigs. First, we observed that early mucus release is triggered in the vicinity of luminal bacteria with inactive T3SA. Subsequent mucosal invasion showed bacteria with active T3SA associated with the brush border, eventually penetrating into epithelial cells. From 2 to 8 h post-challenge, the infection foci expanded, and these intracellular bacteria displayed homogeneously high-secreting activity, while extracellular foci within the lamina propria featured bacteria with low secretion activity. We also found evidence that within lamina propria macrophages, bacteria reside in vacuoles instead of accessing the cytosol. Finally, bacteria were cleared from tissues between 8 and 24 h post-challenge, highlighting the hit-and-run colonization strategy of Shigella. This study demonstrates how genetically encoded reporters can contribute to deciphering pathogenesis in vivo., We mapped Shigella flexneri cells and assessed the activity of their type III secretion apparatus in the large intestine of Guinea pigs.
- Published
- 2019
- Full Text
- View/download PDF
27. Listeriolysin O-dependent host surfaceome remodeling modulates Listeria monocytogenes invasion
- Author
-
Bernd Wollscheid, Juan J. Quereda, Pascale Cossart, Karel Novy, Andreas Kühbacher, Javier Pizarro-Cerdá, Maryse Moya-Nilges, Martin Sachse, Interactions Bactéries-Cellules (UIBC), Institut National de la Recherche Agronomique (INRA)-Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Institute for Molecular Systems Biology [ETH Zurich] (IMSB), Department of Biology [ETH Zürich] (D-BIOL), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), Institut Pasteur [Paris], 1.Institut Pasteur 2.Institut Pasteur ‘Transversal Research Program’ - PTR5213.Institut National de la Santé et de la Recherche Médicale - Unité 6044.Institut National de la Recherche Agronomique - Unité Sous Contrat 20205.Fondation Louis Jeantet 6.European Research Council Advanced - Grant BacCellEpi 6708237.Pasteur-Paris University International Doctoral Program8.Institut Carnot Maladies Infectieuses.9.National Research Agency (ANR) - grant ANR-15-CE15-0017 StopBugEntry 10.Swiss Science National Foundation11.Swiss Initiative for Systems Biology - Grant 51RT 0_12600812.Howard Hughes Medical Institute, ANR-15-CE15-0017,StopBugEntry,Identification des nouvelles molécules cellulaires cibles pour combattre les infections bactériennes(2015), European Project: 670823,H2020,ERC-2014-ADG,BacCellEpi(2015), Institut National de la Recherche Agronomique (INRA)-Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pasteur [Paris] (IP), and Pizarro-Cerda, Javier
- Subjects
0301 basic medicine ,Microbiology (medical) ,Proteome ,Endosome ,[SDV]Life Sciences [q-bio] ,Bacterial Toxins ,late endosomes ,Endosomes ,Endocytosis ,medicine.disease_cause ,Hemolysin Proteins ,03 medical and health sciences ,lysosomes ,Listeria monocytogenes ,medicine ,Humans ,Immunology and Allergy ,pore-forming toxin ,Heat-Shock Proteins ,Phagosome ,Pore-forming toxin ,General Immunology and Microbiology ,Chemistry ,Listeriolysin O ,Membrane Proteins ,Epithelial Cells ,General Medicine ,Lysosomal-Associated Membrane Protein 1 ,3. Good health ,Cell biology ,lysosomal-associated membrane protein 1 ,030104 developmental biology ,Infectious Diseases ,Host-Pathogen Interactions ,Signal transduction ,Research Article ,HeLa Cells ,Late endosomes ,Lysosomes ,Lysosomal-associated membrane protein 1 - Abstract
Listeria monocytogenes is a pathogenic bacterium that invades epithelial cells by activating host signaling cascades, which promote bacterial engulfment within a phagosome. The pore-forming toxin listeriolysin O (LLO), which is required for bacteria phagosomal escape, has also been associated with the activation of several signaling pathways when secreted by extracellular bacteria, including Ca2+ influx and promotion of L. monocytogenes entry. Quantitative host surfaceome analysis revealed significant quantitative remodeling of a defined set of cell surface glycoproteins upon LLO treatment, including a subset previously identified to play a role in the L. monocytogenes infection process. Our data further shows that the lysosomal-associated membrane proteins LAMP-1 and LAMP-2 are translocated to the cellular surface and those LLO-induced Ca2+ fluxes are required to trigger the surface relocalization of LAMP-1. Finally, we identify late endosomes/lysosomes as the major donor compartments of LAMP-1 upon LLO treatment and by perturbing their function, we suggest that these organelles participate in L. monocytogenes invasion., Host surfaceome remodeling modulates Listeria infection
- Published
- 2018
- Full Text
- View/download PDF
28. Bioimage analysis of Shigella infection reveals targeting of colonic crypts
- Author
-
Maryse Moya-Nilges, Giulia Nigro, Martin Sachse, Philippe J. Sansonetti, Ellen T. Arena, Jean-Yves Tinevez, François-Xavier Campbell-Valois, Katharina Nothelfer, Spencer L. Shorte, Benoit S. Marteyn, Pathogénie microbienne moléculaire, Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Imagerie Dynamique (Plate-Forme) (PFID), Institut Pasteur [Paris] (IP), Microscopie ultrastructurale - Ultrapole (CITECH), Collège de France - Chaire Microbiologie et Maladies infectieuses, Collège de France (CdF (institution)), E.T.A. was a Pasteur Foundation and Pasteur-Roux Fellow. F.-X.C.-V. was a Canadian Institutes of Health Research, European Molecular Biology Organization, Marie-Curie, and Fondation de la Recherche Médicale Fellow. P.J.S. is a Howard Hughes Medical Institute Senior International Research Scholar. This work was supported by the European Research Council (PS Advanced Grants 232798 and 339579), France Bioimaging Infrastructure, supported by the French National Research Agency ANR-10-INSB-04-01 Program Investments for the Future, and the Wellcome Trust., We thank Sèbastien Simard (Welcome Trust, London) for his contributions in OMERO and Pamela Schnupf and Claude Parsot for helpful discussions., European Project: 232798,EC:FP7:ERC,ERC-2008-AdG,HOMEOEPITH(2009), European Project: 339579,EC:FP7:ERC,ERC-2013-ADG,DECRYPT(2014), Tinevez, Jean-Yves, Homeostasis and rupture of the gut epithelium in the presence of commensals and pathogens - HOMEOEPITH - - EC:FP7:ERC2009-02-01 - 2013-07-31 - 232798 - VALID, Decrypting signals in the crypt. - DECRYPT - - EC:FP7:ERC2014-04-01 - 2019-03-31 - 339579 - VALID, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pasteur [Paris], and Chaire Microbiologie et Maladies infectieuses
- Subjects
Fluorescence-lifetime imaging microscopy ,Colon ,Confocal ,[SDV]Life Sciences [q-bio] ,Crypt ,Guinea Pigs ,MESH: Intestinal Mucosa / microbiology ,MESH: Shigella flexneri / pathogenicity ,Biology ,medicine.disease_cause ,Microbiology ,Shigella flexneri ,MESH: Guinea Pigs ,tissue microbiology ,Intestinal mucosa ,In vivo ,medicine ,Animals ,Humans ,Shigella ,MESH: Animals ,bioimage analysis ,intestinal crypts ,Intestinal Mucosa ,[SDV.MP] Life Sciences [q-bio]/Microbiology and Parasitology ,Dysentery, Bacillary ,Multidisciplinary ,MESH: Humans ,biology.organism_classification ,digestive system diseases ,3. Good health ,Cell biology ,MESH: Dysentery, Bacillary / pathology ,[SDV] Life Sciences [q-bio] ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,PNAS Plus ,MESH: Colon / microbiology ,Infectious agent ,host–pathogen interactions - Abstract
International audience; Few studies within the pathogenic field have used advanced imaging and analytical tools to quantitatively measure pathogenicity in vivo. In this work, we present a novel approach for the investigation of host-pathogen processes based on medium-throughput 3D fluorescence imaging. The guinea pig model for Shigella flexneri invasion of the colonic mucosa was used to monitor the infectious process over time with GFP-expressing S. flexneri. A precise quantitative imaging protocol was devised to follow individual S. flexneri in a large tissue volume. An extensive dataset of confocal images was obtained and processed to extract specific quantitative information regarding the progression of S. flexneri infection in an unbiased and exhaustive manner. Specific parameters included the analysis of S. flexneri positions relative to the epithelial surface, S. flexneri density within the tissue, and volume of tissue destruction. In particular, at early time points, there was a clear association of S. flexneri with crypts, key morphological features of the colonic mucosa. Numerical simulations based on random bacterial entry confirmed the bias of experimentally measured S. flexneri for early crypt targeting. The application of a correlative light and electron microscopy technique adapted for thick tissue samples further confirmed the location of S. flexneri within colonocytes at the mouth of crypts. This quantitative imaging approach is a novel means to examine host-pathogen systems in a tailored and robust manner, inclusive of the infectious agent.
- Published
- 2015
- Full Text
- View/download PDF
29. Growth and host interaction of mouse segmented filamentous bacteria in vitro
- Author
-
Marine Gros, Valérie Gaboriau-Routhiau, Philippe J. Sansonetti, Giulia Nigro, Nadine Cerf-Bensussan, Robin C. Friedman, Pamela Schnupf, Maryse Moya-Nilges, Pathogénie Microbienne Moléculaire, Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Imagine - Institut des maladies génétiques (IMAGINE - U1163), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, École normale supérieure de Lyon (ENS de Lyon), Imagopole (CITECH), Institut Pasteur [Paris] (IP), Collège de France - Chaire Microbiologie et Maladies infectieuses, Collège de France (CdF (institution)), INSERM, Institut Pasteur, College de France, INRA, Investissement d'Avenir ANR-10-IAHU-01, LabEX IBEID, ANR-2010-BLAN1317, ERC-2009-AG-232798-HOMEOPITH, ERC-2013-AdG-339579-DECRYPT, ERC-2013-AdG-339407-IMMUNOBIOTA, ANR-10-BLAN-1317,SFBIMPRO,Analyse fonctionnelle et moléculaire des interactions de l'hôte avec la bactérie commensale Segmented Filamentous Bacterium, un puissant chef d'orchestre des réponses immunes intestinales(2010), European Project: 222720,EC | FP7 | SP1 | KBBE ,FP7-KBBE-2007-2A,TORNADO(2009), European Project: 232798,EC:FP7:ERC,ERC-2008-AdG,HOMEOEPITH(2009), European Project: 339579,EC:FP7:ERC,ERC-2013-ADG,DECRYPT(2014), European Project: 339407,EC:FP7:ERC,ERC-2013-ADG,IMMUNOBIOTA(2014), Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), École normale supérieure - Lyon (ENS Lyon), Institut Pasteur [Paris], Chaire Microbiologie et Maladies infectieuses, Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Microbiologie et Maladies Infectieuses, Collège de France (CdF), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur [Paris], and Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,Chemokine ,[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT] ,Segmented filamentous bacteria ,T cell ,Cellular microbiology ,Cell ,Gut flora ,Article ,MATURATION ,Cell Line ,Feces ,Peyer's Patches ,Immune system ,Escherichia coli ,medicine ,Animals ,Germ-Free Life ,Humans ,GUT ,Lymphocytes ,Intestinal Mucosa ,Symbiosis ,Immunity, Mucosal ,Microbial Viability ,Multidisciplinary ,T-CELL RESPONSES ,Bacteria ,biology ,biology.organism_classification ,MICROBIOTA ,Actins ,Coculture Techniques ,Cell biology ,Intestines ,GENOME ,MICE ,medicine.anatomical_structure ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,Immunology ,biology.protein ,Th17 Cells ,Female ,IMMUNE-SYSTEM ,Intracellular - Abstract
Development of a segmented filamentous bacteria and host cell co-culturing system that supports filamentation, segmentation, and differentiation to release viable infectious intracellular offspring. The gut microbiota is important for maturation of the host's mucosal immune system. In particular, the species commonly referred to as segmented filamentous bacterium (SFB) is unique in being able to stimulate maturation of the B and T cell compartments and induce T helper 17 (Th17) cell responses in the intestine. However, little is known about host–SFB interaction as attempts to culture the bacterium in vitro have been unsuccessful for more than 50 years. Now Philippe Sansonetti and colleagues have developed an SFB–host cell co-culturing system which they use to support filamentation, segmentation and differentiation to release viable infectious particles. These offspring can colonize mice and induce the signature immune response, meaning that the new culture system will rapidly accelerate our understanding of these important symbionts and their interaction with their host. The gut microbiota plays a crucial role in the maturation of the intestinal mucosal immune system of its host1,2. Within the thousand bacterial species present in the intestine, the symbiont segmented filamentous bacterium (SFB) is unique in its ability to potently stimulate the post-natal maturation of the B- and T-cell compartments and induce a striking increase in the small-intestinal Th17 responses3,4,5. Unlike other commensals, SFB intimately attaches to absorptive epithelial cells in the ileum and cells overlying Peyer’s patches6,7. This colonization does not result in pathology; rather, it protects the host from pathogens4. Yet, little is known about the SFB–host interaction that underlies the important immunostimulatory properties of SFB, because SFB have resisted in vitro culturing for more than 50 years. Here we grow mouse SFB outside their host in an SFB–host cell co-culturing system. Single-celled SFB isolated from monocolonized mice undergo filamentation, segmentation, and differentiation to release viable infectious particles, the intracellular offspring, which can colonize mice to induce signature immune responses. In vitro, intracellular offspring can attach to mouse and human host cells and recruit actin. In addition, SFB can potently stimulate the upregulation of host innate defence genes, inflammatory cytokines, and chemokines. In vitro culturing thereby mimics the in vivo niche, provides new insights into SFB growth requirements and their immunostimulatory potential, and makes possible the investigation of the complex developmental stages of SFB and the detailed dissection of the unique SFB–host interaction at the cellular and molecular levels.
- Published
- 2015
- Full Text
- View/download PDF
30. Crippling the bacterial cell wall molecular machinery
- Author
-
Julia Chamot-Rooke, Ignacio Santecchia, Muhamed-Kheir Taha, Ivo G. Boneca, Ahmed Haouz, Christian Malosse, Samia Hicham, William P. Robins, Allison H. Williams, Maryse Moya Nilges, Paulo Bastos, Ala-Eddine Deghmane, Richard J. Wheeler, and Francis Impens
- Subjects
0303 health sciences ,Glycan ,biology ,030306 microbiology ,Interactome ,Bacterial cell structure ,Cell biology ,Cell wall ,03 medical and health sciences ,chemistry.chemical_compound ,chemistry ,Lytic cycle ,Helix ,biology.protein ,Peptidoglycan ,Alpha helix ,030304 developmental biology - Abstract
Lytic transglycosylases (LT) are redundant enzymes that play a critical role in peptidoglycan (PG) recycling and metabolism. LT(s) role in cell wall-modifying complexes and usefulness as antimicrobial drug targets remain elusive. We determined at high-resolution a structure of the membrane-bound homolog of the soluble LT fromNeisseriaspecies with a disordered active site helix (alpha helix 30). Alpha helix 30 is crucial for binding PG during catalysis1. Here we show using an alpha helix 30 deletion strain that LT (LtgA) determines the integrity of the cell wall, participates in cell division and separation, and can be manipulated to impair the fitness of the human pathogenNeisseria meningitidisduring infection. Characterization ofltgAhelix deleted strain interactome identified glycan chain remodeling enzymes whose function appear to be modulated by LTs. Targeting LTs can disrupt the PG machinery, which is fatal for the bacterium, a new approach for antibiotic development.
- Full Text
- View/download PDF
31. Bioengineered Human Organ-on-Chip Reveals Intestinal Microenvironment and Mechanical Forces Impacting Shigella Infection
- Author
-
Katia Karalis, Samy Gobaa, Philippe J. Sansonetti, Valérie Malardé, Alexandre Grassart, Anna Sartori-Rupp, Benoit S. Marteyn, Jordan Kerns, Nathalie Sauvonnet, Pathogénie microbienne moléculaire, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Ressources et de Recherche Technologique - Center for Technological Resources and Research (C2RT), Institut Pasteur [Paris], Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), Emulate, Inc, Architecture et Réactivité de l'ARN (ARN), Institut de biologie moléculaire et cellulaire (IBMC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Pathogénie Microbienne Moléculaire, Chaire Microbiologie et Maladies infectieuses, Collège de France (CdF (institution)), A.G. was supported by a Roux fellowship from Institut Pasteur, the PTR22-2016 from the Institut Pasteur, the Institut Carnot Pasteur MS, and ANR-17-CE15-0012-01., The authors would like to thank Maryse Moya-Nilges and Jacomine Krijnse Locker from the Unité de Bio-Imagerie Ultra-Structurale of Institut Pasteur. We also thank Héloise Mary from the Biomaterials and Microfluidics core facility and P.H. Commere from the Flow Cytometry Facility of Institut Pasteur. We would also like to thank Jacob P. Fraser from Emulate, Inc. for the initial training on the platform. We also thank P. Brodin, M. Ferrari, and F.X. Campbell-Valois for comments and discussion on the manuscript, ANR-17-CE15-0012,NEUTROXIA,Effet de l'exposition des neutrophiles à l'oxygène sur leur activation et leur mort : une lame à double tranchant(2017), Sartori-Rupp, Anna, Effet de l'exposition des neutrophiles à l'oxygène sur leur activation et leur mort : une lame à double tranchant - - NEUTROXIA2017 - ANR-17-CE15-0012 - AAPG2017 - VALID, Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pasteur [Paris] (IP), and Collège de France - Chaire Microbiologie et Maladies infectieuses
- Subjects
[SDV]Life Sciences [q-bio] ,peristalsis ,enterocyte ,Human pathogen ,02 engineering and technology ,medicine.disease_cause ,MESH: Shigella ,Bacterial Adhesion ,MESH: Enterocytes ,0302 clinical medicine ,microengineering ,Organ-on-Chip ,host-pathogen interactions ,Barrier integrity ,Shigella ,Intestinal Mucosa ,Infectivity ,0303 health sciences ,stretching ,021001 nanoscience & nanotechnology ,Cell biology ,Intestines ,[SDV] Life Sciences [q-bio] ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,medicine.anatomical_structure ,MESH: Epithelial Cells ,MESH: Intestinal Mucosa ,MESH: Caco-2 Cells ,0210 nano-technology ,MESH: Intestines ,Colonic epithelium ,MESH: Dysentery, Bacillary ,Enterocyte ,Intestine-Chip ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,Microbiology ,shear stress ,03 medical and health sciences ,Virology ,medicine ,Humans ,MESH: Bacterial Adhesion ,[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials ,[SDV.BC] Life Sciences [q-bio]/Cellular Biology ,[SDV.MP] Life Sciences [q-bio]/Microbiology and Parasitology ,intestine ,Dysentery, Bacillary ,030304 developmental biology ,MESH: Humans ,Diarrheal diseases ,Gut-on-Chip ,MESH: Host-Pathogen Interactions ,Epithelial Cells ,[SDV.IB.BIO] Life Sciences [q-bio]/Bioengineering/Biomaterials ,Enterocytes ,Parasitology ,Caco-2 Cells ,030217 neurology & neurosurgery - Abstract
Erratum in Bioengineered Human Organ-on-Chip Reveals Intestinal Microenvironment and Mechanical Forces Impacting Shigella Infection. [Cell Host Microbe. 2019]; International audience; Intestinal epithelial cells are constantly exposed to pathogens and mechanical forces. However, the impact of mechanical forces on infections leading to diarrheal diseases remains largely unknown. Here, we addressed whether flow and peristalsis impact the infectivity of the human pathogen Shigella within a 3D colonic epithelium using Intestine-Chip technology. Strikingly, infection is significantly increased and minimal bacterial loads are sufficient to invade enterocytes from the apical side and trigger loss of barrier integrity, thereby shifting the paradigm about early stage Shigella invasion. Shigella quickly colonizes epithelial crypt-like invaginations and demonstrates the essential role of the microenvironment. Furthermore, by modulating the mechanical forces of the microenvironment, we find that peristalsis impacts Shigella invasion. Collectively, our results reveal that Shigella leverages the intestinal microenvironment by taking advantage of the microarchitecture and mechanical forces to efficiently invade the intestine. This approach will enable molecular and mechanistic interrogation of human-restricted enteric pathogens.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.