1. Limited effect of ozone reductions on the 20‐year photosynthesis trend at Harvard forest
- Author
-
Yue, Xu, Keenan, Trevor F, Munger, William, and Unger, Nadine
- Subjects
Plant Biology ,Biological Sciences ,Forecasting ,Forests ,Neural Networks ,Computer ,Ozone ,Photosynthesis ,Plant Leaves ,United States ,artificial neural networks ,decadal trend ,deciduous forest ,gross primary production ,ozone inhibition ,photosynthesis ,stomatal conductance ,terrestrial biosphere model ,Neural Networks ,Environmental Sciences ,Ecology ,Biological sciences ,Earth sciences ,Environmental sciences - Abstract
Ozone (O3 ) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O3 concentrations ([O3 ]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long-term changes in ambient [O3 ] using 20 years of observations at Harvard forest. Using artificial neural networks, we found that the effect of the inclusion of [O3 ] as a predictor was slight, and independent of O3 concentrations, which suggests limited high-frequency O3 inhibition of GPP at this site. Simulations with a terrestrial biosphere model, however, suggest an average long-term O3 inhibition of 10.4% for 1992-2011. A decline of [O3 ] over the measurement period resulted in moderate predicted GPP trends of 0.02-0.04 μmol C m-2 s-1 yr-1 , which is negligible relative to the total observed GPP trend of 0.41 μmol C m-2 s-1 yr-1 . A similar conclusion is achieved with the widely used AOT40 metric. Combined, our results suggest that ozone reductions at Harvard forest are unlikely to have had a large impact on the photosynthesis trend over the past 20 years. Such limited effects are mainly related to the slow responses of photosynthesis to changes in [O3 ]. Furthermore, we estimate that 40% of photosynthesis happens in the shade, where stomatal conductance and thus [O3 ] deposition is lower than for sunlit leaves. This portion of GPP remains unaffected by [O3 ], thus helping to buffer the changes of total photosynthesis due to varied [O3 ]. Our analyses suggest that current ozone reductions, although significant, cannot substantially alleviate the damages to forest ecosystems.
- Published
- 2016