1. Coenzyme A biosynthesis in Bacillus subtilis : discovery of a novel precursor metabolite for salvage and its uptake system.
- Author
-
Warneke R, Herzberg C, Klein M, Elfmann C, Dittmann J, Feussner K, Feussner I, and Stülke J
- Subjects
- Biological Transport, Bacterial Proteins metabolism, Bacterial Proteins genetics, Bacillus subtilis metabolism, Bacillus subtilis genetics, Coenzyme A metabolism, Pantothenic Acid metabolism, Pantothenic Acid biosynthesis, Metabolic Networks and Pathways genetics, Biosynthetic Pathways genetics
- Abstract
The Gram-positive model bacterium Bacillus subtilis is used for many biotechnological applications, including the large-scale production of vitamins. For vitamin B5, a precursor for coenzyme A synthesis, there is so far no established fermentation process available, and the metabolic pathways that involve this vitamin are only partially understood. In this study, we have elucidated the complete pathways for the biosynthesis of pantothenate and coenzyme A in B. subtilis . Pantothenate can not only be synthesized but also be taken up from the medium. We have identified the enzymes and the transporter involved in the pantothenate biosynthesis and uptake. High-affinity vitamin B5 uptake in B. subtilis requires an ATP-driven energy coupling factor transporter with PanU (previously YhfU) as the substrate-specific subunit. Moreover, we have identified a salvage pathway for coenzyme A acquisition that acts on complex medium even in the absence of pantothenate synthesis. This pathway requires rewiring of sulfur metabolism resulting in the increased expression of a cysteine transporter. In the salvage pathway, the bacteria import cysteinopantetheine, a novel naturally occurring metabolite, using the cystine transport system TcyJKLMN. This work lays the foundation for the development of effective processes for vitamin B5 and coenzyme A production using B. subtilis ., Importance: Vitamins are essential components of the diet of animals and humans. Vitamins are thus important targets for biotechnological production. While efficient fermentation processes have been developed for several vitamins, this is not the case for vitamin B5 (pantothenate), the precursor of coenzyme A. We have elucidated the complete pathway for coenzyme A biosynthesis in the biotechnological workhorse Bacillus subtilis . Moreover, a salvage pathway for coenzyme A synthesis was found in this study. Normally, this pathway depends on pantetheine; however, we observed activity of the salvage pathway on complex medium in mutants lacking the pantothenate biosynthesis pathway even in the absence of supplemented pantetheine. This required rewiring of metabolism by expressing a cystine transporter due to acquisition of mutations affecting the regulation of cysteine metabolism. This shows how the hidden "underground metabolism" can give rise to the rapid formation of novel metabolic pathways., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF