21 results on '"Roupioz, Laure"'
Search Results
2. Evaluation of the Urban Weather Generator on the City of Toulouse (France).
- Author
-
Hamdi, Hiba, Roupioz, Laure, Corpetti, Thomas, and Briottet, Xavier
- Subjects
URBAN heat islands ,METROPOLITAN areas ,STANDARD deviations ,METEOROLOGICAL stations ,ATMOSPHERIC temperature - Abstract
This article addresses the simulation of urban air temperatures with a focus on evaluating the Urban Weather Generator (UWG) model over Toulouse, France. As urban temperatures, influenced by factors like urbanization, anthropogenic heat release, and complex urban geometry, exhibit an urban heat island (UHI) effect, understanding and mitigating UHI become crucial. With increasing global warming and urban populations, aiding urban planners necessitates accurate simulations requiring data at the canyon level. The paper evaluates UWG's performance in simulating air temperatures under realistic conditions, emphasizing an operational context and a non-specialist user's perspective. The evaluation includes selecting the most suitable meteorological station, assessing the impact of the rural station choice, and conducting a sensitivity analysis of input parameters. The validation demonstrates good agreement, with a mean bias error (MBE) of 0.02 °C and a root mean square error (RMSE) of 1.73 °C. However, we highlight the fact that UWG performs better in a densely urbanized area, and exhibits limitations in sensitivity to urban surface parameter variations, particularly in less urbanized areas. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Mapping Pluvial Flood-Induced Damages with Multi-Sensor Optical Remote Sensing: A Transferable Approach
- Author
-
Cerbelaud, Arnaud, primary, Blanchet, Gwendoline, additional, Roupioz, Laure, additional, Breil, Pascal, additional, and Briottet, Xavier, additional
- Published
- 2023
- Full Text
- View/download PDF
4. Fusion of Heterogenous Sensor Data in Border Surveillance
- Author
-
Patino, Luis, primary, Hubner, Michael, additional, King, Rachel, additional, Litzenberger, Martin, additional, Roupioz, Laure, additional, Michon, Kacper, additional, Szklarski, Łukasz, additional, Pegoraro, Julian, additional, Stoianov, Nikolai, additional, and Ferryman, James, additional
- Published
- 2022
- Full Text
- View/download PDF
5. Proxy data of surface water floods in rural areas: application to the evaluation of the IRIP intense runoff mapping method based on rainfall radar, satellite remote sensing and machine learning techniques
- Author
-
Breil, Pascal, Cerbelaud, Arnaud, Blanchet, Gwendoline, Briottet, Xavier, Roupioz, Laure, and Breil, Pascal
- Subjects
[SDE] Environmental Sciences - Abstract
Materials and Methods The IRIP© hydrological geomatics mapping model, or "Indicator of Intense Pluvial Runoff", is confronted with past extreme events for which rainfall radar measurements were acquired and damage maps were derived from multispectral bi-temporal satellite imagery (Sentinel-1 and 2) and machine learning (ML) supervised classification algorithms. Results Study areas Six watersheds in the Aude and Alpes-Maritimes departments in the South of France are investigated over more than 2.000 km 2 of rural and periurban areas during three flash-flood events (2018-2020).
- Published
- 2022
6. Proxy Data of Surface Water Floods in Rural Areas: Application to the Evaluation of the IRIP Intense Runoff Mapping Method Based on Satellite Remote Sensing and Rainfall Radar
- Author
-
Cerbelaud, Arnaud, primary, Breil, Pascal, additional, Blanchet, Gwendoline, additional, Roupioz, Laure, additional, and Briottet, Xavier, additional
- Published
- 2022
- Full Text
- View/download PDF
7. Modélisation de la signature optique des nappes de pétrole en mer pour l'analyse des images multi et hyperspectrales dans le VIS-SWIR
- Author
-
Caillault, Karine, Roupioz, Laure, Viallefont-Robinet, Francoise, DOTA, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay, ONERA / DOTA, Université de Toulouse [Toulouse], and ONERA-PRES Université de Toulouse
- Subjects
[PHYS]Physics [physics] ,[SPI]Engineering Sciences [physics] ,Signature hyperspectrale ,Modélisation ,Oil detection ,Epaisseur des nappes d’hydrocarbures ,Modeling ,Détection hydrocarbure ,Oil slick thickness ,Hyperspectral signature - Abstract
International audience; This work focuses on the contribution of modelling for the interpretation of multi- or hyperspectral optical images for the detection, characterisation and quantification of oil spills. Many parameters contribute to the spectral signature of an oil layer on the sea surface: the optical properties of the water column and of the oil, the film thickness, the surface roughness, the atmospheric radiance reaching the surface (direct and diffuse components), the geometry of observation and illumination. The number of these contributors and their combinations make the analysis of the spectral variability of oil signatures at the sea surface complex. Modelling approaches allow us to consider all those parameters and can then provide useful information to improve the interpretation of optical images. The model presented in this paper simulates the radiance of an oil layer from visible to short wave infrared spectral domains, taking into account all the above-mentioned parameters. The damping influence of the oil layer on sea surface waves is also considered. Comparisons of the simulations with in situ measurements shows a good overall agreement despite the lack of knowledge of some input parameters of the model. In combination with laboratory and in-the-field measurements, the model is then used to assess the expected contrast between water and oil and to estimate oil slick volume.; Ce travail se concentre sur la contribution de la modélisation pour l'interprétation des des images optiques hyperspectrales pour la détection, la caractérisation et la quantification des nappes de pétroles. De nombreux paramètres contribuent à la signature spectrale d'une couche d'hydrocarbures à la surface de la mer : les propriétés optiques de la colonne d'eau et des hydrocarbures, l'épaisseur du film, la rugosité de la surface, le rayonnement atmosphérique atteignant la surface (composantes directe et diffuse), la géométrie de l'observation et de l'illumination. Le nombre de ces facteurs et leurs combinaisons rendent complexe l'analyse de la variabilité spectrale des signatures d'hydrocarbures à la surface de la mer. Les approches de modélisation permettent de prendre en compte tous ces paramètres et peuvent ensuite fournir des informations utiles pour améliorer l'interprétation des images optiques. Le modèle présenté dans cet article simule la luminance d'une couche de pétrole du visible au SWIR en tenant compte tous les paramètres mentionnés ci-dessus. L'influence de la couche de pétrole sur l'amortissement des vagues est également pris en compte. La comparaison des simulations avec les mesures in situ montre un bon accord global malgré la méconnaissance de certains paramètres d'entrée du modèle. Combiné à des mesures terrain et en laboratoire , le modèle est ensuite utilisé pour évaluer le contraste attendu entre l'eau et le pétrole et pour estimer le volume de la nappe de pétrole.
- Published
- 2021
- Full Text
- View/download PDF
8. Roof Material Mapping: Application Over Liège Using Open-Source Object-Based Supervised Classification Algorithms
- Author
-
Wyard, Coraline WC, Beaumont, Benjamin, Marion, Rodolphe, Roupioz, Laure, Grippa, Taïs, and Hallot, Eric
- Subjects
Télédétection - Abstract
Roof materials can be a significant source of pollution for the environment and can have negative health effects. Analyses of runoff water revealed high levels of metal traces but also polycyclic aromatic hydrocarbons and phthalates. This contamination would result from corrosion and alteration of roof materials. Similarly, the alteration or combustion of asbestos contained in certain types of roofs may allow the emission and dispersion of asbestos fibres into the environment. Therefore, acquiring information on roof materials is of great interest to decrease runoff water pollution, and to improve air and environmental quality around our homes. To this end, remote sensing is a particularly relevant tool since it allows semi-automatic mapping of roof materials using multispectral or hyperspectral data. The CASMATTELE project aims to develop a semi-automatic identification tool of roofing materials over the Liege area using remote-sensing and machine learning for public authorities., info:eu-repo/semantics/published
- Published
- 2021
9. Modelling of the optical signature of oil slicks at sea for the analysis of multi- and hyperspectral VNIR-SWIR images
- Author
-
Caillault, Karine, primary, Roupioz, Laure, additional, and Viallefont-Robinet, Francoise, additional
- Published
- 2021
- Full Text
- View/download PDF
10. Roof Material Mapping: Application Over Liège Using Open-Source Object-Based Supervised Classification Algorithms
- Author
-
EARSeL Joint Workshop - Earth Observation for Sustainable Cities and Communities (Liège, Belgium), Wyard, Coraline WC, Beaumont, Benjamin, Marion, Rodolphe, Roupioz, Laure, Grippa, Taïs, Hallot, Eric, EARSeL Joint Workshop - Earth Observation for Sustainable Cities and Communities (Liège, Belgium), Wyard, Coraline WC, Beaumont, Benjamin, Marion, Rodolphe, Roupioz, Laure, Grippa, Taïs, and Hallot, Eric
- Abstract
info:eu-repo/semantics/nonPublished
- Published
- 2021
11. Oil slick volume estimation from combined use of airborne hyperspectral and pool experiment data
- Author
-
Miegebielle Veronique, Roupioz Laure, Viallefont-Robinet Francoise, ONERA / DOTA, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, TOTAL S.A., and TOTAL FINA ELF
- Subjects
[PHYS]Physics [physics] ,AIRBORNE HYPERSPECTRAL IMAGERY ,010504 meteorology & atmospheric sciences ,Pixel ,0208 environmental biotechnology ,Combined use ,Hyperspectral imaging ,02 engineering and technology ,Volume estimation ,01 natural sciences ,Oil emulsion ,020801 environmental engineering ,OIL THICKNESS ,POOL EXPERIMENT ,[SPI]Engineering Sciences [physics] ,Environmental science ,Absorption (electromagnetic radiation) ,OIL SLICK DETECTION ,0105 earth and related environmental sciences ,Remote sensing ,Volume (compression) - Abstract
International audience; To date, estimating oil thickness on the sea surface remains a challenge in most cases. When oil thickness estimation using optical data is limited by the absorption properties of the target, a solution consists in combining experimental and airborne hyperspectral data. We developed a method to identify thickness classes from hyperspectral data which, combined with realistic thickness values derived from a pool experiment, allows to estimate slick volume. Hyperspectral images of the same oil emulsion were acquired over a pool and at sea, under real conditions. From the pool data, we derived two classes: the sheen and the thick pixels, along with their respective thickness. These classes are then identified on the airborne images acquired during the NOFO campaign by generating a detection mask and using two classification approaches based on spectral indices. The proposed method allows to correctly identify the two thickness classes and, combined with the data from the pool experiment, provides a total slick volume larger than the one derived for the Bonn Agreement Oil Appearance Code.
- Published
- 2019
- Full Text
- View/download PDF
12. Correction for the Impact of the Surface Characteristics on the Estimation of the Effective Emissivity at Fine Resolution in Urban Areas
- Author
-
Roupioz, Laure, Nerry, Françoise, Colin, Jérôme, ONERA / DOTA, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), and Nerry, Françoise
- Subjects
[SDE] Environmental Sciences ,[SDE.MCG] Environmental Sciences/Global Changes ,Science ,[SDE.MCG]Environmental Sciences/Global Changes ,surface roughness ,urban areas ,[SDE]Environmental Sciences ,effective emissivity ,ComputingMilieux_MISCELLANEOUS ,thermal infrared satellite data - Abstract
Most of the methods used to retrieve land surface temperature (LST) from thermal infrared (TIR) satellite data in urban areas do not take into account the complexity of the surface. Cities are characterized by high surface roughness and one of the main constraints to estimate LST over those areas is the difficulty to define an effective emissivity for a given pixel at a given scale. When working with mixed pixels, the emissivity used to estimate the LST is an effective emissivity composed of the emissivities of each basic element constituting the pixel. In urban areas, the surface geometry has a strong impact on this effective emissivity. Its estimation from TIR satellite data must be carried out considering multiple surface reflections and diffusions within the urban canopy in order to retrieve accurate LST values. The objective of this study is then to evaluate the impact of the surface geometry within the pixel on effective emissivity estimation and to propose a method to derive an effective emissivity corrected for those effects. Emissivity can be derived at 90 m of spatial resolution from the TIR data acquired by ASTER. To evaluate the impact of the geometry at the scale of an ASTER pixel, several urban canyon configurations are designed to develop and test the correction method. The basic principle behind the method is to accurately estimate the downwelling TIR radiation received by a pixel integrating contributions from both the atmosphere and the scene inside this pixel and then derive the corrected effective emissivity from ASTER data using the TES (temperature emissivity separation) algorithm. First, the total downwelling TIR radiation is estimated from the geometric characteristics of the scene, using morphological indicators and integrating the non-isothermal behavior of the pixel thanks to 3D thermo-radiative model simulations. The validation of those estimations for each canyon configuration provides a maximum RMSE (Root Mean Square Error) value of 2.2 W·m−2. The validation performed over a district extracted from the 3D numerical model of Strasbourg (France) shows a RMSE of 2.5 W·m−2. Once the method to estimate the total downwelling TIR radiation is validated, LSE and LST maps are retrieved from an ASTER image over three districts of Strasbourg, showing that accounting for the surface geometry highlights thermal behavior differences inside districts, and that the impact of the geometry seems more influenced by building height than street width or building density.
- Published
- 2018
- Full Text
- View/download PDF
13. Mesures pour l’étude des ambiances climatiques à Strasbourg lors de la canicule de juillet 2015
- Author
-
Kastendeuch, Pierre, Najjar, Georges, Philipps, Nathalia, Nerry, Françoise, Roupioz, Laure, Colin, Jerome, Luhahe, Raphaël, Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), and univOAK, Archive ouverte
- Subjects
[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic - Published
- 2016
14. Validation du modèle Laser/F par des images thermiques dans le cadre de la campagne bio-climatologique sur Strasbourg
- Author
-
Roupioz, Laure, Kastendeuch, Pierre, Najjar, Georges, Landes, Tania, Nerry, Françoise, Colin, Jerome, Luhahe, Raphaël, Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), and univOAK, Archive ouverte
- Subjects
[SDU.OTHER] Sciences of the Universe [physics]/Other ,[SDU.OTHER]Sciences of the Universe [physics]/Other - Published
- 2016
15. L’Arbre en ENvironnement Urbain : Modélisation 3D et suivi des échanges radiatifs et d’énergie d’un îlot vert
- Author
-
Kastendeuch, Pierre, Landes, Tania, Najjar, Georges, Nerry, Françoise, Colin, Jerome, Roupioz, Laure, Saudreau, Marc, Ngao, Jérôme, Améglio, Thierry, Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, and univOAK, Archive ouverte
- Subjects
[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic - Published
- 2016
16. A new Global Agro-Environmental Stratification (GAES)
- Author
-
Mücher, Sander, De Simone, Lorenzo, Kramer, Henk, de Wit, Allard, Roupioz, Laure, Hazeu, Gerard, Boogaard, Hendrik, Schuiling, Rini, Fritz, Steffen, Latham, John, Cormont, Anouk, Mücher, Sander, De Simone, Lorenzo, Kramer, Henk, de Wit, Allard, Roupioz, Laure, Hazeu, Gerard, Boogaard, Hendrik, Schuiling, Rini, Fritz, Steffen, Latham, John, and Cormont, Anouk
- Abstract
The GAES database (Version 01a) is a newly developed Global Agro-Environmental Stratification within the EU SIGMA (Stimulating Innovation for Global Monitoring of Agriculture) project. GAES will serve as a new agro-environmental stratification for better global monitoring of the agricultural production on the basis of Earth Observation data and crop growth models. It is anticipated that GAES will be exploited for a wider range of applications, some within SIGMA, towards data gap analysis that identifies agro-environmental strata with limited capacity and monitoring data on agricultural production. GAES was produced by applying segmentation techniques to newly available global agroenvironmental data with a high spatial resolution re-sampled to 1 km spatial resolution. The datasets were able to stratify the agricultural production zones according to the region’s agro-environmental characteristics, including climatic regimes, soil, terrain, elevation conditions, water availability and land cover proprieties. The GAES strata obtained by segmentation at four different spatial levels (with Level 4 as the most detailed) have been further characterised and described in terms of phenology (e.g. start and peak of the growing season), agricultural (water) management practices, field size, biotic constraints, national and sub-national crop production statistics, GDP, transport infrastructure conditions or market accessibility. The GAES database has four hierarchical layers, with 92 attributes. GAES Level 1 has 194 agro-environmental (AE) types (818 strata); GAES Level 2 has 300 AE types (1,688 strata); GAES Level 3 has 374 AE types (2,087 strata); GAES Level 4 has 516 AE types (3,208 strata). GAES typology is a combination of temperature, altitude, parent material and land cover characteristics. GAES Version 01 has become freely available.
- Published
- 2016
17. Estimation of Daily Solar Radiation Budget at Kilometer Resolution over the Tibetan Plateau by Integrating MODIS Data Products and a DEM
- Author
-
Roupioz, Laure, primary, Jia, Li, additional, Nerry, Françoise, additional, and Menenti, Massimo, additional
- Published
- 2016
- Full Text
- View/download PDF
18. GEOSPECS - European perspectives on Specific Types of Territories
- Author
-
Gloersen, Erik, Michelet, Jacques Félix, Corbineau, Clément, Giraut, Frédéric, Price, Martin F., Borowski, Diana, Perez Soba, Marta, Eupen, Michel van, Roupioz, Laure, and Schuiling, Rini
- Subjects
Régions frontalières ,Cohésion territoriale ,Régions ultra-périphériques ,Union européennes ,Espaces faiblement peuplés ,Montagne ,Iles ,ddc:910 ,Zones côtières - Abstract
Regions with specific territorial features have received increasing attention in recent years, most notably in article 174 of the Treaty on the Functioning of the European Union (TFEU) and the Green Paper on Territorial Cohesion. These key policy documents identify certain territories – cross-border, island, mountain, Outermost and sparsely populated regions – in two ways: as having particular challenges, and as having particular assets, many of benefit to Europe as a whole. Two other types of such ‘geographic specificities' have also been recognised: coastal areas and inner peripheries. While there have been a number of studies of groups of these areas, or individual types of territories (e.g., coasts, mountains) at the European scale, GEOSPECS is the first comprehensive study of all of these particular types of territories.
- Published
- 2013
19. GEOSPECS: Inner Peripheries: a socio-economic territorial specificity
- Author
-
Pérez-Soba, Marta, van Eupen, Michiel, Roupioz, Laure, Schuiling, Rini, Gloersen, Erik, Michelet, Jacques Félix, Corbineau, Clément, Giraut, Frédéric, Price, Martin, and Borowski, Diana
- Subjects
Europe ,Policy options ,Inner peripheries ,Territorial specificities ,ddc:910 - Abstract
Territorial specificities are mostly described as geographic, i.e. sparsely populated, insular, border, and mountainous regions, and generally result in economic and social performance levels around or below European averages. However, other territorial specificities are also found in Europe, in which the socio-economic characteristics prevail above the geographic ones. These specificities include ‘areas affected by industrial transition', as mentioned in article 174 of the Treaty on the Functioning of the European Union among ‘the regions concerned that should be paid particular attention'. Some countries and regions have identified these peripheral areas ‘out of the socio-economic loop' as ‘Inner Peripheries' (IP). No policy documents at European level address these explicitly, illustrating that the concept of IP as such is new in the European policy arena.
- Published
- 2012
20. A Summary of User Needs and Expectations with Regards to Impact Assessment
- Author
-
Adelle, Camilla, Jordan, Andy, Turnpenny, John, Perez Soba, Marta, Roupioz, Laure, Larsen, Larse Ege, Bournaris, Thomas, Moulogianni, Christina, Jacob, Klaus, Weiland, Sabine, Nommann, Tea, Peterson, Kaja, Mäkinen, Kirsi, Saarela, Sanna-Riika, Kautto, Petrus, Kuittinen, Hanna, Sánchez, Begona, and Bartke, Stephan
- Subjects
LIAISE ,Impact Assessment ,300 Sozialwissenschaften::320 Politikwissenschaft - Published
- 2011
21. Improved Surface Reflectance from Remote Sensing Data with Sub-Pixel Topographic Information
- Author
-
Roupioz, Laure, primary, Nerry, Francoise, additional, Jia, Li, additional, and Menenti, Massimo, additional
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.