23 results on '"Rynearson, T."'
Search Results
2. Spring Bloom Development, Genetic Variation, and Population Succession in the Planktonic Diatom Ditylum brightwellii
- Author
-
Rynearson, T. A., Newton, J. A., and Armbrust, E. V.
- Published
- 2006
3. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism
- Author
-
Ambrust, E.V., Berges, J., Bowler, C., Green, B., Martinez, D., Putnam, N., Zhou, S., Allen, A., Apt, K., Bechner, M., Brzezinski, M., Chaal, B., Chiovitti, A., Davis, A., Goodstein, D., Hadi, M., Hellsten, U., Hildebrand, M., Jenkins, B., Jurka, J., Kapitonov, V., Kroger, N., Lau, W., Lane, T., Larimer, F., Lippmeier, J., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M. Schnitzler, Palenik, B., Pazour, G., Richardson, P., Rynearson, T., Saito, M., Schwartz, D., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F., Rokhsar, D., Wilkerson, F.P., and Rokhsar, D.S.
- Subjects
Basic biological sciences - Published
- 2004
4. Temporal and Spatial Scales of Correlation in Marine Phytoplankton Communities
- Author
-
Kuhn, A. M., Dutkiewicz, S., Jahn, O., Clayton, S., Rynearson, T. A., Mazloff, M. R., Barton, A. D., Kuhn, A. M., Dutkiewicz, S., Jahn, O., Clayton, S., Rynearson, T. A., Mazloff, M. R., and Barton, A. D.
- Abstract
Ocean circulation shapes marine phytoplankton communities by setting environmental conditions and dispersing organisms. In addition, processes acting on the water column (e.g., heat fluxes and mixing) affect the community structure by modulating environmental variables that determine in situ growth and loss rates. Understanding the scales over which phytoplankton communities vary in time and space is key to elucidate the relative contributions of local processes and ocean circulation on phytoplankton distributions. Using a global ocean ecosystem model, we quantify temporal and spatial correlation scales for phytoplankton phenotypes with diverse functional traits and cell sizes. Through this analysis, we address these questions: (1) Over what timescales do perturbations in phytoplankton populations persist? and (2) over what distances are variations in phytoplankton populations synchronous? We find that correlation timescales are short in regions of strong currents, such as the Gulf Stream and Antarctic Circumpolar Current. Conversely, in the subtropical gyres, phytoplankton population anomalies persist for relatively long periods. Spatial correlation length scales are elongated near ocean fronts and narrow boundary currents, reflecting flow paths and frontal patterns. In contrast, we find nearly isotropic spatial correlation fields where current speeds are small, or where mixing acts roughly equally in all directions. Phytoplankton timescales and length scales also vary coherently with phytoplankton body size. In addition to aiding understanding of phytoplankton population dynamics, our results provide global insights to guide the design of biological ocean observing networks and to better interpret data collected at long-term monitoring stations.
- Published
- 2019
5. Experimental evolution gone wild
- Author
-
Scheinin, Matias, Riebesell, Ulf, Rynearson, T. A., Lohbeck, Kai T., Collins, S., Scheinin, Matias, Riebesell, Ulf, Rynearson, T. A., Lohbeck, Kai T., and Collins, S.
- Abstract
Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change.
- Published
- 2015
- Full Text
- View/download PDF
6. Experimental evolution gone wild
- Author
-
Scheinin, M., primary, Riebesell, U., additional, Rynearson, T. A., additional, Lohbeck, K. T., additional, and Collins, S., additional
- Published
- 2015
- Full Text
- View/download PDF
7. The Phaeodactylum genome reveals the evolutionary history of diatom genomes
- Author
-
Bowler, C., Allan, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheshwari, U., Martens, C., Maumus, F., Otillar, R. P., Rayko, E., Salamov, A., Vandepoele, K., Beszeri, B., Gruber, A., Heijde, M., Katinka, M., Mock, Thomas, Valentin, Klaus-Ulrich, Verret, F., Berges, J. A., Brownlee, C., Chiovitti, A., Jae Choi, C., Coesel, S., De Martino, A., Detter, J. C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M. J. J., Jenkins, B. D., Jiroutova, K., Jorgensen, R. E., Joubert, Y., Kaplan, A., Kröger, N., Kroth, P. G., La Roche, J., Lindquiste, E., Lommer, M., Martin-Jézéquel, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, Linda, Monsant, A., Oudot-Le Secq, M.-P., Napoli, C., Obornik, M., Petit, J.-L., Porcel, B. M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Schnitzler Parker, M., Shapiro, H., Siaur, M., Stanley, M., Sussman, M. J., Taylor, A. R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J., Armbrust, E. V., Green, B. R., Van de Peer, Y., Grigoriev, I. V., and Cadoret, J.-P.
- Published
- 2008
8. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing
- Author
-
Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., Amaral-Zettler, L. A., Armbrust, E. V., Archibald, J. M., Bharti, A. K., Bell, C. J., Beszteri, B., Bidle, K. D., Cameron, C. T., Campbell, L., Caron, D. A., Cattolico, R. A., Collier, J. L., Coyne, K., Davy, S. K., Deschamps, P., Dyhrman, S. T., Edvardsen, B., Gates, R. D., Gobler, C. J., Greenwood, S. J., Guida, S. M., Jacobi, J. L., Jakobsen, K. S., James, E. R., Jenkins, B., John, U., Johnson, M. D., Juhl, A. R., Kamp, A., Katz, L. A., Kiene, R., Kudryavtsev, A., Leander, B. S., Lin, S., Lovejoy, C., Lynn, D., Marchetti, A., McManus, G., Nedelcu, A. M., Menden-Deuer, S., Miceli, C., Mock, T., Montresor, M., Moran, M. A., Murray, S., Nadathur, G., Nagai, S., Ngam, P. B., Palenik, B., Pawlowski, J., Petroni, G., Piganeau, G., Posewitz, M. C., Rengefors, K., Romano, G., Rumpho, M. E., Rynearson, T., Schilling, K. B., Schroeder, D. C., Simpson, A. G. B., Slamovits, C. H., Smith, D. R., Smith, G. J., Smith, S. R., Sosik, H. M., Stief, P., Theriot, E., Twary, S. N., Umale, P. E., Vaulot, D., Wawrik, B., Wheeler, G. L., Wilson, W. H., Xu, Y., Zingone, A., Worden, Alexandra Z., Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., Amaral-Zettler, L. A., Armbrust, E. V., Archibald, J. M., Bharti, A. K., Bell, C. J., Beszteri, B., Bidle, K. D., Cameron, C. T., Campbell, L., Caron, D. A., Cattolico, R. A., Collier, J. L., Coyne, K., Davy, S. K., Deschamps, P., Dyhrman, S. T., Edvardsen, B., Gates, R. D., Gobler, C. J., Greenwood, S. J., Guida, S. M., Jacobi, J. L., Jakobsen, K. S., James, E. R., Jenkins, B., John, U., Johnson, M. D., Juhl, A. R., Kamp, A., Katz, L. A., Kiene, R., Kudryavtsev, A., Leander, B. S., Lin, S., Lovejoy, C., Lynn, D., Marchetti, A., McManus, G., Nedelcu, A. M., Menden-Deuer, S., Miceli, C., Mock, T., Montresor, M., Moran, M. A., Murray, S., Nadathur, G., Nagai, S., Ngam, P. B., Palenik, B., Pawlowski, J., Petroni, G., Piganeau, G., Posewitz, M. C., Rengefors, K., Romano, G., Rumpho, M. E., Rynearson, T., Schilling, K. B., Schroeder, D. C., Simpson, A. G. B., Slamovits, C. H., Smith, D. R., Smith, G. J., Smith, S. R., Sosik, H. M., Stief, P., Theriot, E., Twary, S. N., Umale, P. E., Vaulot, D., Wawrik, B., Wheeler, G. L., Wilson, W. H., Xu, Y., Zingone, A., and Worden, Alexandra Z.
- Published
- 2014
- Full Text
- View/download PDF
9. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing
- Author
-
Keeling, PJ, Burki, F, Wilcox, HM, Allam, B, Allen, EE, Amaral-Zettler, LA, Armbrust, EV, Archibald, JM, Bharti, AK, Bell, CJ, Beszteri, B, Bidle, KD, Cameron, CT, Campbell, L, Caron, DA, Cattolico, RA, Collier, JL, Coyne, K, Davy, SK, Deschamps, P, Dyhrman, ST, Edvardsen, B, Gates, RD, Gobler, CJ, Greenwood, SJ, Guida, SM, Jacobi, JL, Jakobsen, KS, James, ER, Jenkins, B, John, U, Johnson, MD, Juhl, AR, Kamp, A, Katz, LA, Kiene, R, Kudryavtsev, A, Leander, BS, Lin, S, Lovejoy, C, Lynn, D, Marchetti, A, McManus, G, Nedelcu, AM, Menden-Deuer, S, Miceli, C, Mock, T, Montresor, M, Moran, MA, Murray, S, Nadathur, G, Nagai, S, Ngam, PB, Palenik, B, Pawlowski, J, Petroni, G, Piganeau, G, Posewitz, MC, Rengefors, K, Romano, G, Rumpho, ME, Rynearson, T, Schilling, KB, Schroeder, DC, Simpson, AGB, Slamovits, CH, Smith, DR, Smith, GJ, Smith, SR, Sosik, HM, Stief, P, Theriot, E, Twary, SN, Umale, PE, Vaulot, D, Wawrik, B, Wheeler, GL, Wilson, WH, Xu, Y, Zingone, A, Worden, AZ, Keeling, PJ, Burki, F, Wilcox, HM, Allam, B, Allen, EE, Amaral-Zettler, LA, Armbrust, EV, Archibald, JM, Bharti, AK, Bell, CJ, Beszteri, B, Bidle, KD, Cameron, CT, Campbell, L, Caron, DA, Cattolico, RA, Collier, JL, Coyne, K, Davy, SK, Deschamps, P, Dyhrman, ST, Edvardsen, B, Gates, RD, Gobler, CJ, Greenwood, SJ, Guida, SM, Jacobi, JL, Jakobsen, KS, James, ER, Jenkins, B, John, U, Johnson, MD, Juhl, AR, Kamp, A, Katz, LA, Kiene, R, Kudryavtsev, A, Leander, BS, Lin, S, Lovejoy, C, Lynn, D, Marchetti, A, McManus, G, Nedelcu, AM, Menden-Deuer, S, Miceli, C, Mock, T, Montresor, M, Moran, MA, Murray, S, Nadathur, G, Nagai, S, Ngam, PB, Palenik, B, Pawlowski, J, Petroni, G, Piganeau, G, Posewitz, MC, Rengefors, K, Romano, G, Rumpho, ME, Rynearson, T, Schilling, KB, Schroeder, DC, Simpson, AGB, Slamovits, CH, Smith, DR, Smith, GJ, Smith, SR, Sosik, HM, Stief, P, Theriot, E, Twary, SN, Umale, PE, Vaulot, D, Wawrik, B, Wheeler, GL, Wilson, WH, Xu, Y, Zingone, A, and Worden, AZ
- Published
- 2014
10. Major contribution of diatom resting spores to vertical flux in the sub-polar North Atlantic
- Author
-
Rynearson, T. A., Richardson, Katherine, Lampitt, R. S., Sieracki, M. E., Poulton, A. J., Lyngsgaard, Maren Moltke, Perry, M. J., Rynearson, T. A., Richardson, Katherine, Lampitt, R. S., Sieracki, M. E., Poulton, A. J., Lyngsgaard, Maren Moltke, and Perry, M. J.
- Published
- 2013
11. The Phaeodactylum genome reveals the evolutionary history of diatom genomes
- Author
-
Bowler, C, Allen, A, Badger, J, Grimwood, J, Jabbari, K, Kuo, A, Maheswari, U, Martens, C, Maumus, F, Otillar, R, Rayko, E, Salamov, A, Vandepoele, K, Beszteri, B, Gruber, A, Heijde, M, Katinka, M, Mock, T, Valentin, K, Verret, F, Berges, J, Brownlee, C, Cadoret, Jean-paul, Chiovitti, A, Choi, C, Coesel, S, De Martino, A, Detter, J, Durkin, C, Falciatore, A, Fournet, J, Haruta, M, Huysman, M, Jenkins, B, Jiroutova, K, Jorgensen, R, Joubert, Y, Kaplan, A, Kroger, N, Kroth, P, La Roche, J, Lindquist, E, Lommer, M, Martin Jezequel, V, Lopez, P, Lucas, S, Mangogna, M, Mcginnis, K, Medlin, L, Montsant, A, Oudot Le Secq, M, Napoli, C, Obornik, M, Parker, M, Petit, J, Porcel, B, Poulsen, N, Robison, M, Rychlewski, L, Rynearson, T, Schmutz, J, Shapiro, H, Siaut, M, Stanley, M, Sussman, M, Taylor, A, Vardi, A, Von Dassow, P, Vyverman, W, Willis, A, Wyrwicz, L, Rokhsar, D, Weissenbach, J, Armbrust, E, Green, B, Van De Peer, Y, Grigoriev Iv, Bowler, C, Allen, A, Badger, J, Grimwood, J, Jabbari, K, Kuo, A, Maheswari, U, Martens, C, Maumus, F, Otillar, R, Rayko, E, Salamov, A, Vandepoele, K, Beszteri, B, Gruber, A, Heijde, M, Katinka, M, Mock, T, Valentin, K, Verret, F, Berges, J, Brownlee, C, Cadoret, Jean-paul, Chiovitti, A, Choi, C, Coesel, S, De Martino, A, Detter, J, Durkin, C, Falciatore, A, Fournet, J, Haruta, M, Huysman, M, Jenkins, B, Jiroutova, K, Jorgensen, R, Joubert, Y, Kaplan, A, Kroger, N, Kroth, P, La Roche, J, Lindquist, E, Lommer, M, Martin Jezequel, V, Lopez, P, Lucas, S, Mangogna, M, Mcginnis, K, Medlin, L, Montsant, A, Oudot Le Secq, M, Napoli, C, Obornik, M, Parker, M, Petit, J, Porcel, B, Poulsen, N, Robison, M, Rychlewski, L, Rynearson, T, Schmutz, J, Shapiro, H, Siaut, M, Stanley, M, Sussman, M, Taylor, A, Vardi, A, Von Dassow, P, Vyverman, W, Willis, A, Wyrwicz, L, Rokhsar, D, Weissenbach, J, Armbrust, E, Green, B, Van De Peer, Y, and Grigoriev Iv
- Abstract
Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one- fifth of the primary productivity on Earth(1,2). The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology(3-5). Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (similar to 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.
- Published
- 2008
- Full Text
- View/download PDF
12. The Phaeodactylum genome reveals the evolutionary history of diatom genomes
- Author
-
Cadoret, J.-P., Bowler, C., Allan, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheshwari, U., Martens, C., Maumus, F., Otillar, R. P., Rayko, E., Salamov, A., Vandepoele, K., Beszeri, B., Gruber, A., Heijde, M., Katinka, M., Mock, Thomas, Valentin, Klaus-Ulrich, Verret, F., Berges, J. A., Brownlee, C., Chiovitti, A., Jae Choi, C., Coesel, S., De Martino, A., Detter, J. C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M. J. J., Jenkins, B. D., Jiroutova, K., Jorgensen, R. E., Joubert, Y., Kaplan, A., Kröger, N., Kroth, P. G., La Roche, J., Lindquiste, E., Lommer, M., Martin-Jézéquel, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, Linda, Monsant, A., Oudot-Le Secq, M.-P., Napoli, C., Obornik, M., Petit, J.-L., Porcel, B. M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Schnitzler Parker, M., Shapiro, H., Siaur, M., Stanley, M., Sussman, M. J., Taylor, A. R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J., Armbrust, E. V., Green, B. R., Van de Peer, Y., Grigoriev, I. V., Cadoret, J.-P., Bowler, C., Allan, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheshwari, U., Martens, C., Maumus, F., Otillar, R. P., Rayko, E., Salamov, A., Vandepoele, K., Beszeri, B., Gruber, A., Heijde, M., Katinka, M., Mock, Thomas, Valentin, Klaus-Ulrich, Verret, F., Berges, J. A., Brownlee, C., Chiovitti, A., Jae Choi, C., Coesel, S., De Martino, A., Detter, J. C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M. J. J., Jenkins, B. D., Jiroutova, K., Jorgensen, R. E., Joubert, Y., Kaplan, A., Kröger, N., Kroth, P. G., La Roche, J., Lindquiste, E., Lommer, M., Martin-Jézéquel, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, Linda, Monsant, A., Oudot-Le Secq, M.-P., Napoli, C., Obornik, M., Petit, J.-L., Porcel, B. M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Schnitzler Parker, M., Shapiro, H., Siaur, M., Stanley, M., Sussman, M. J., Taylor, A. R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J., Armbrust, E. V., Green, B. R., Van de Peer, Y., and Grigoriev, I. V.
- Published
- 2008
13. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism
- Author
-
Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H., Zhou, S., Allen, A. E., Apt, K. E., Bechner, M., Brzezinski, M. A., Chaal, B. K., Chiovitti, A., Davis, A. K., Demarest, M. S., Detter, J. C., Glavina, T., Goodstein, D., Hadi, M. Z., Hellsten, U., Hildebrand, M., Jenkins, B. D., Jurka, J., Kapitonov, V. V., Kroeger, N., Lau, W. W., Lane, T. W., Larimer, F. W., Lippmeier, J. C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M. S., Palenik, B., Pazour, G. J., Richardson, P. M., Rynearson, T. A., Saito, M. A., Schwartz, D. C., Thamatrakoln, K., Valentin, Klaus-Ulrich, Vardi, A., Wilkerson, F. P., Rokhsar, D. S., Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H., Zhou, S., Allen, A. E., Apt, K. E., Bechner, M., Brzezinski, M. A., Chaal, B. K., Chiovitti, A., Davis, A. K., Demarest, M. S., Detter, J. C., Glavina, T., Goodstein, D., Hadi, M. Z., Hellsten, U., Hildebrand, M., Jenkins, B. D., Jurka, J., Kapitonov, V. V., Kroeger, N., Lau, W. W., Lane, T. W., Larimer, F. W., Lippmeier, J. C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M. S., Palenik, B., Pazour, G. J., Richardson, P. M., Rynearson, T. A., Saito, M. A., Schwartz, D. C., Thamatrakoln, K., Valentin, Klaus-Ulrich, Vardi, A., Wilkerson, F. P., and Rokhsar, D. S.
- Published
- 2004
14. Copepod feeding and digestion rates using prey DNA and qPCR
- Author
-
Durbin, E. G., primary, Casas, M. C., additional, and Rynearson, T. A., additional
- Published
- 2011
- Full Text
- View/download PDF
15. Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front
- Author
-
Smetacek, Victor, Klaas, Christine, Menden-Deuer, S., Rynearson, T. A., Smetacek, Victor, Klaas, Christine, Menden-Deuer, S., and Rynearson, T. A.
- Published
- 2002
16. Spatial and temporal distribution of assemblages of the diatom Corethron criophilum in the polar frontal region of the South Atlantic
- Author
-
Crawford, Richard, Hinz, Friedel, Rynearson, T., Crawford, Richard, Hinz, Friedel, and Rynearson, T.
- Published
- 1997
17. Additional Serotypes of Mycobacterium scrofulaceum, Mycobacterium gordonae, Mycobacterium marinum, and Mycobacterium xenopi Determined by Agglutination
- Author
-
GOSLEE, S., primary, RYNEARSON, T. K., additional, and WOLINSKY, E., additional
- Published
- 1976
- Full Text
- View/download PDF
18. Biodiversity of marine microbes is safeguarded by phenotypic heterogeneity in ecological traits.
- Author
-
Menden-Deuer S, Rowlett J, Nursultanov M, Collins S, and Rynearson T
- Subjects
- Computer Simulation, Phenotype, Aquatic Organisms physiology, Bacteria metabolism, Biodiversity
- Abstract
Why, contrary to theoretical predictions, do marine microbe communities harbor tremendous phenotypic heterogeneity? How can so many marine microbe species competing in the same niche coexist? We discovered a unifying explanation for both phenomena by investigating a non-cooperative game that interpolates between individual-level competitions and species-level outcomes. We identified all equilibrium strategies of the game. These strategies represent the probability distribution of competitive abilities (e.g. traits) and are characterized by maximal phenotypic heterogeneity. They are also neutral towards each other in the sense that an unlimited number of species can co-exist while competing according to the equilibrium strategies. Whereas prior theory predicts that natural selection would minimize trait variation around an optimum value, here we obtained a mathematical proof that species with maximally variable traits are those that endure. This discrepancy may reflect a disparity between predictions from models developed for larger organisms in contrast to our microbe-centric model. Rigorous mathematics proves that phenotypic heterogeneity is itself a mechanistic underpinning of microbial diversity. This discovery has fundamental ramifications for microbial ecology and may represent an adaptive reservoir sheltering biodiversity in changing environmental conditions., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
19. Trophic upgrading and mobilization of wax esters in microzooplankton.
- Author
-
Roohani K, Haubrich BA, Yue KL, D'Souza N, Montalbano A, Rynearson T, Menden-Deuer S, and Reid CW
- Abstract
Heterotrophic protists play pivotal roles in aquatic ecosystems by transferring matter and energy, including lipids, from primary producers to higher trophic predators. Using Oxyrrhis marina as a model organism, changes to the non-saponifiable protist lipids were investigated under satiation and starvation conditions. During active feeding on the alga Cryptomonas sp., the O. marina hexane soluble non-saponifiable fraction lipid profile reflected its food source with the observed presence of long chain mono-unsaturated fatty alcohols up to C25:1. Evidence of trophic upgrading in O. marina was observed with long chain mono-unsaturated fatty alcohol accumulation of up to C35:1. To the best of our knowledge, this is the first evidence that heterotrophic dinoflagellates are capable of producing ester derived alcohols and that dinoflagellates like O. marina are capable of synthesizing fatty alcohols up to C
35 . Additionally, we show evidence of trophic upgrading of lipids. During a 20-day resource deprivation, the lipid profile remained constant. During starvation, the mobilization of wax esters as energy stores was observed with long chain fatty alcohols mobilized first. Changes in lipid class profile and utilization of wax esters in O. marina provides insight into the types of lipids available for energy demand, the transfer of lipids through the base of marine food webs, and the catabolic response induced by resource deprivation., Competing Interests: Susanne Menden-Deuer is an Academic Editor for PeerJ.- Published
- 2019
- Full Text
- View/download PDF
20. The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments.
- Author
-
Godhe A and Rynearson T
- Subjects
- Biological Evolution, Climate Change, Diatoms metabolism, Environment, Carbon metabolism, Diatoms genetics, Genetic Variation, Phenotype
- Abstract
Intraspecific variation in diatoms has been shown to play a key role in species' responses to several important environmental factors such as light, salinity, temperature and nutrients. Furthermore, modelling efforts indicate that this variation within species extends bloom periods, and likely provides sufficient variability in competitive interactions between species under hydrographically variable conditions. The intraspecific variation most likely corresponds to optimal fitness in temporary microhabitats and may help to explain the paradox of the plankton. Here, we examine the implications of intraspecific variation for the ecology and success of diatoms in general and emphasize the potential implications for our understanding of carbon metabolism in these important organisms. Additionally, data from palaeoecological studies have the potential for evaluating genetic variation through past climate changes, going thousands of years back in time. We suggest pathways for future research including the adoption of multiple strains of individual species into studies of diatom carbon metabolism, to refine our understanding of the variation within and between species, and the inclusion of experimental evolution as a tool for understanding potential evolutionary responses of diatom carbon metabolism to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'., (© 2017 The Author(s).)
- Published
- 2017
- Full Text
- View/download PDF
21. Draft Genome Sequences of Three Bacterial Isolates from Cultures of the Marine Diatom Thalassiosira rotula .
- Author
-
Garcia NS, Yung CM, Davis KM, Rynearson T, and Hunt DE
- Abstract
Phytoplankton often both provision and depend on heterotrophic bacteria. In order to investigate these relationships further, we sequenced draft genomes of three bacterial isolates from cultures of the marine diatom Thalassiosira rotula to identify metabolic functions that may support interactions with T. rotula ., (Copyright © 2017 Garcia et al.)
- Published
- 2017
- Full Text
- View/download PDF
22. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing.
- Author
-
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R, Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, McManus G, Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S, Nadathur G, Nagai S, Ngam PB, Palenik B, Pawlowski J, Petroni G, Piganeau G, Posewitz MC, Rengefors K, Romano G, Rumpho ME, Rynearson T, Schilling KB, Schroeder DC, Simpson AG, Slamovits CH, Smith DR, Smith GJ, Smith SR, Sosik HM, Stief P, Theriot E, Twary SN, Umale PE, Vaulot D, Wawrik B, Wheeler GL, Wilson WH, Xu Y, Zingone A, and Worden AZ
- Subjects
- Databases, Factual, Molecular Sequence Data, Sequence Analysis, Biodiversity, Environmental Microbiology, Eukaryota, Oceans and Seas, Transcriptome
- Abstract
Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2014
- Full Text
- View/download PDF
23. Psychotherapy of bereavement after homicide.
- Author
-
Rynearson T
- Abstract
The author presents guidelines for the assessment and initial treatment of bereavement after a homicide. Early interventions include nonverbal techniques applied in individual and group therapy. Because patients are over-whelmed and reactive, initial treatment strategy is supportive and focuses on reestablishing resiliency rather than on preexisting vulnerabilities (ambivalence, guilt, repression, denial). Adjustment to homicidal dying is lifelong, and therapist and patient should acknowledge that change may be limited.
- Published
- 1994
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.