1. Bound states in string nets
- Author
-
Julien Vidal, Sébastien Dusuel, Marc Schulz, Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique Théorique et Modèles Statistiques ( LPTMS ), and Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
High Energy Physics - Theory ,05.30.Pr ,Binding energy ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th] ,75.10.Jm ,Condensed Matter - Strongly Correlated Electrons ,symbols.namesake ,High Energy Physics - Lattice ,Lattice (order) ,Quantum mechanics ,0103 physical sciences ,Bound state ,[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,010306 general physics ,Quantum ,dimension: quantum ,lattice ,energy: low ,Physics ,Quantum Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,string tension ,[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat] ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,High Energy Physics - Lattice (hep-lat) ,[ PHYS.HLAT ] Physics [physics]/High Energy Physics - Lattice [hep-lat] ,phase: topological ,71.10.Pm ,16. Peace & justice ,021001 nanoscience & nanotechnology ,binding energy ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Hamiltonian ,bound state ,High Energy Physics - Theory (hep-th) ,03.65.Ge ,symbols ,Quantum Physics (quant-ph) ,0210 nano-technology ,Hamiltonian (quantum mechanics) - Abstract
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit., 5 pages, 3 figures, published version
- Published
- 2016