39 results on '"Taikan Suehara"'
Search Results
2. Development of a Vertex Finding Algorithm using Recurrent Neural Network
- Author
-
Kiichi Goto, Taikan Suehara, Tamaki Yoshioka, Masakazu Kurata, Hajime Nagahara, Yuta Nakashima, Noriko Takemura, and Masako Iwasaki
- Subjects
FOS: Computer and information sciences ,Nuclear and High Energy Physics ,Computer Science - Machine Learning ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,High Energy Physics - Experiment ,Machine Learning (cs.LG) ,High Energy Physics - Experiment (hep-ex) ,Physics - Data Analysis, Statistics and Probability ,Physics::Accelerator Physics ,Instrumentation ,Data Analysis, Statistics and Probability (physics.data-an) ,ComputingMethodologies_COMPUTERGRAPHICS - Abstract
Deep learning is a rapidly-evolving technology with possibility to significantly improve physics reach of collider experiments. In this study we developed a novel algorithm of vertex finding for future lepton colliders such as the International Linear Collider. We deploy two networks; one is simple fully-connected layers to look for vertex seeds from track pairs, and the other is a customized Recurrent Neural Network with an attention mechanism and an encoder-decoder structure to associate tracks to the vertex seeds. The performance of the vertex finder is compared with the standard ILC reconstruction algorithm., Comment: 16 pages, 9 figures
- Published
- 2021
- Full Text
- View/download PDF
3. SliT: A Strip-sensor Readout Chip with Subnanosecond Time-walk for the J-PARC Muon $g-2$/EDM Experiment
- Author
-
Tsutomu Mibe, T. Yamanaka, Yuki Tsutumi, Y. Sato, Tetsuichi Kishishita, J. Tojo, Shohei Shirabe, Masayoshi Shoji, Tamaki Yoshioka, Eitaro Hamada, Taikan Suehara, Yoichi Fujita, M. Tanaka, and Tsubasa Nagasawa
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Physics - Instrumentation and Detectors ,Anomalous magnetic dipole moment ,010308 nuclear & particles physics ,business.industry ,Amplifier ,FOS: Physical sciences ,Integrated circuit ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,Capacitance ,law.invention ,High Energy Physics - Experiment ,Differentiator ,High Energy Physics - Experiment (hep-ex) ,Optics ,Nuclear Energy and Engineering ,CMOS ,law ,0103 physical sciences ,Electrical and Electronic Engineering ,business ,Voltage - Abstract
A new silicon-strip readout chip named "SliT" has been developed for the measurement of the muon anomalous magnetic moment and electric dipole moment at J-PARC. The SliT is designed in the Silterra 180 nm CMOS technology with mixed-signal integrated circuits. An analog circuit incorporates a conventional charge-sensitive amplifier, shaping amplifiers, and two distinct discriminators for each of 128 identical channels. A digital part includes storage memories, an event building block, a serializer, and LVDS drivers. A distinct feature of the SliT is utilization of the zero-cross architecture, which consists of a CR-RC filter followed by a CR circuit as a voltage differentiator. This architecture enables to generate hit signals with subnanosecond amplitude-independent time walk, which is the primary requirement for the experiment. The test results show the time walk of $0.38 \pm 0.16$ ns between 0.5 and 3 MIP signals. The equivalent noise charge is $1547 \pm 75 $ $e^{-}$ (rms) at $C_{\rm det} = 33$ pF as a strip-sensor capacitance. Other functionalities such as a strip-sensor readout chip have also been proven in the tests. The SliT128C satisfies all requirements of the J-PARC muon $g-2$/EDM experiment., 7 pages, 12 figures
- Published
- 2020
4. Study of Position Sensitive Silicon Detector (PSD) for SiW-ECAL at ILC
- Author
-
Y. Uesugi, H. Yamashiro, Tamaki Yoshioka, Taikan Suehara, Kiyotomo Kawagoe, and R. Mori
- Subjects
Materials science ,Physics - Instrumentation and Detectors ,Silicon ,Physics::Instrumentation and Detectors ,chemistry.chemical_element ,FOS: Physical sciences ,01 natural sciences ,Signal ,030218 nuclear medicine & medical imaging ,High Energy Physics - Experiment ,03 medical and health sciences ,High Energy Physics - Experiment (hep-ex) ,0302 clinical medicine ,Optics ,Position (vector) ,Distortion ,0103 physical sciences ,Instrumentation ,Electrical impedance ,Mathematical Physics ,Resistive touchscreen ,010308 nuclear & particles physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Charged particle ,chemistry ,business - Abstract
We are developing position sensitive silicon detectors (PSDs) which have an electrode at each of four corners so that incident position of a charged particle can be obtained with signal from the electrodes. It is expected that the position resolution of the electromagnetic calorimeter (ECAL) of the ILD detector will be improved by introducing PSDs to detection layers. We have been developing the PSDs for several years. In the previous production we found that the charge separation is not optimally done due to the readout impedance. To solve the issue, we produced new PSDs with higher surface resistance with an additional resistive layer on the surface. We also implemented several techniques to decrease position distortion and increase signal-to-noise ratio which are essential for the optimal position resolution. The measurements on the prototype sensors are ongoing, including radiation source measurement and laser measurement using an ASIC for silicon pad detectors., 7 pages, 8 figures. Talk presented at the Calorimetry for the High Energy Frontier 2019 (CHEF2019), Fukuoka, Japan, 25-29 November 2019
- Published
- 2020
5. Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC
- Author
-
S. Callier, Franck Richard, Didier Lacour, A. Irles, J. Nanni, Vladislav Balagura, S. Bilokin, Daniel Jeans, Taikan Suehara, G. Fayolle, P. Ghislain, J. E. Augustin, J. M. Parraud, Ch. de la Taille, L. Lavergne, N. Seguin-Moreau, A. Lobanov, A. Gallas, Jong-Seo Chai, K. Shpak, H. Videau, R. Cornat, V. Boudry, F. Dulucq, Tamaki Yoshioka, Y. Miura, J. Bonis, Kiyotomo Kawagoe, Dan Yu, M. Louzir, M. Anduze, R. Guillaumat, R. Pöschl, J. David, Patrick Cornebise, Frédéric Magniette, F. Gastaldi, E. Edy, A. Thiebault, J. C. Brient, Dirk Zerwas, M. Frotin, M. Rubio-Roy, I. Sekiya, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Organisation de Micro-Électronique Générale Avancée (OMEGA), École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)
- Subjects
Nuclear and High Energy Physics ,noise ,Physics - Instrumentation and Detectors ,Silicon ,electromagnetic [calorimeter] ,FOS: Physical sciences ,chemistry.chemical_element ,Si and pad detectors ,01 natural sciences ,Signal ,law.invention ,Calorimeters ,law ,0103 physical sciences ,ddc:530 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,DESY Lab ,Detectors and Experimental Techniques ,Calorimeter methods ,010306 general physics ,Instrumentation ,Physics ,010308 nuclear & particles physics ,Noise (signal processing) ,business.industry ,CALICE ,Detector ,PIN diode ,DESY ,Instrumentation and Detectors (physics.ins-det) ,Line (electrical engineering) ,calorimeter: electromagnetic ,chemistry ,Optoelectronics ,Infrastructure for advanced calorimeters [14] ,business ,Beam (structure) ,performance - Abstract
Nuclear instruments & methods in physics research / A 950, 162969 (2020). doi:10.1016/j.nima.2019.162969, The technological prototype of the CALICE highly granular silicon–tungsten electromagnetic calorimeter (SiW-ECAL) was tested in a beam at DESY in 2017. The setup comprised seven layers of silicon sensors. Each layer comprised four sensors, with each sensor containing an array of 256 5.5×5.5 mm$^2$ silicon PIN diodes. The four sensors covered a total area of 18 × 18 cm and comprised a total of 1024 channels. The readout was split into a trigger line and a charge signal line. Key performance results for signal over noise for the two output lines are presented, together with a study of the uniformity of the detector response. Measurements of the response to electrons for the tungsten loaded version of the detector are also presented., Published by North-Holland Publ. Co., Amsterdam
- Published
- 2020
- Full Text
- View/download PDF
6. Study of silicon sensors for precise timing measurement
- Author
-
Tamaki Yoshioka, Kiyotomo Kawagoe, R. Mori, Yuto Deguchi, Taikan Suehara, E. Mestre, and Université Paris-Saclay
- Subjects
Physics - Instrumentation and Detectors ,Silicon ,APDS ,International Linear Collider ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,chemistry.chemical_element ,01 natural sciences ,ILC Coll ,Particle identification ,030218 nuclear medicine & medical imaging ,law.invention ,03 medical and health sciences ,0302 clinical medicine ,law ,0103 physical sciences ,APDs ,CMOSimagers ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,visible and IR photons (solid-state) (PIN diodes ,visible and IR photons (solid-state) ,Photon detectors for UV ,Instrumentation ,time resolution ,Mathematical Physics ,etc) ,Diode ,Physics ,EBCCDs ,irradiation ,010308 nuclear & particles physics ,business.industry ,Instrumentation and methods for time-of-flight (TOF) spectroscopy ,Resolution (electron density) ,Detector ,CCDs ,Si-PMTs ,Instrumentation and Detectors (physics.ins-det) ,EMCCDs ,chemistry ,G-APDs ,Optoelectronics ,Multiplication ,business ,performance ,semiconductor detector: design - Abstract
International audience; Silicon sensors with high time resolution can help particle identification in the International Linear Collider (ILC). We are studying Low Gain Avalanche Diodes (LGADs) as a high timing resolution sensor. As a step to develop LGADs, we are now focusing to characterize Avalanche Photo Diode (APD)s, because the APDs has the same multiplication structure as LGADs. We studied the characteristics of APDs with particles from radioisotopes.
- Published
- 2019
- Full Text
- View/download PDF
7. Recommendations on ILC Project Implementation
- Author
-
Taikan Suehara, Patricia McBride, and Andrew Lankford
- Published
- 2019
- Full Text
- View/download PDF
8. Development of Silicon Strip Detector for J-PARC muon g-2/EDM Experiment
- Author
-
Kiyotomo Kawagoe, Masayoshi Shoji, Kazuki Ueno, Nobuhiko Sato, Edm experiment, T. Takatomi, Shohei Shirabe, J-Parc muon g −, Shoichiro Nishimura, Tatsuya Kume, Y. Sato, Masahiro Ikeno, Takumi Ito, Tetsuichi Kishishita, Hiromasa Yasuda, H. Sendai, T. Murakami, Osamu Sasaki, Junji Tojo, Takashi Kohriki, Naohito Saito, Takashi Yamanaka, Yuki Tsutsumi, Tamaki Yoshioka, Tomohisa Uchida, Taikan Suehara, Manobu Tanaka, M. Matama, Hirokazu Ikeda, and Tsutomu Mibe
- Subjects
Physics ,Muon ,Silicon ,Anomalous magnetic dipole moment ,Physics::Instrumentation and Detectors ,Physics beyond the Standard Model ,Detector ,chemistry.chemical_element ,Nuclear physics ,Electric dipole moment ,chemistry ,High Energy Physics::Experiment ,J-PARC ,Sensitivity (control systems) - Abstract
The muon anomalous magnetic moment $(g-2)_{\mu}$ and electric dipole moment (EDM) are sensitive to new physics beyond the Standard Model. We aim to measure $(g-2)_{\mu}$ with a precision of 0.1 parts per million and search for EDM with a sensitivity of $10^{-21}~e \cdot$cm at J-PARC. In this experiment, we use a silicon strip detector with high granularity and fast response to detect positrons from muon decay. We report on the development status of the silicon strip detector.
- Published
- 2019
- Full Text
- View/download PDF
9. A new approach for measuring the muon anomalous magnetic moment and electric dipole moment
- Author
-
S. Okada, Yoshihisa Iwashita, O. Sasaki, T. Takatomi, D. Nomura, Tatsuya Kume, Kanetada Nagamine, Masahiro Ikeno, Glenn M. Marshall, Y. Kondo, Hiromasa Yasuda, K. Hayasaka, T. Murakami, N. Sato, Noriyosu Hayashizaki, K. Ishida, M. Finger, Y. Shatunov, Moses Chung, G. A. Beer, S. Wada, Y. Miyake, T Kohriki, Toru Iijima, M. Tanaka, S. Choi, Katsushi Hasegawa, S. Nishimura, Yu Oishi, Yoshiyuki Iwata, H. Choi, Gerry Bunce, M. Shoji, S. Bae, Hiromi Iinuma, H. Sendai, Hiromi Hisamatsu, Yuki Tsutsumi, T. Yamanaka, Takeshi Fukuyama, H. Nakayama, K. Suzuki, Toru Ogitsu, Katsunobu Oide, H. Yamaguchi, Koichiro Shimomura, Patrick Strasser, M. Abe, Y. K. Semertzidis, H. Ko, Y. Fukao, Yasuyuki Matsuda, B.A. Shwartz, K. Inami, Masashi Otani, Tsutomu Mibe, K. Ueno, S. Haciomeroglu, Taikan Suehara, A. Yamamoto, Z. Omarov, T. Kamitani, S Kamal, Yongsun Kim, Y. Sato, Naritoshi Kawamura, A. Rehman, H. Ikeda, K. Sasaki, N. F. Saito, Shih-Chang Lee, Ryosuke Kadono, G.P. Razuvaev, T. Yamazaki, Tamaki Yoshioka, W. Da Silva, C. Sung, N. Saito, J. Tojo, B. Kim, Satoshi Ohsawa, E. Won, A. Olin, F Kapusta, M. Yoshida, R Kitamura, M. J. Lee, T. Itahashi, T. Uchida, Woodo Lee, S. Kanda, M. Iwasaki, T. Kishishita, Kiyotomo Kawagoe, Yuki Sue, Semen Eidelman, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Accelerator Physics (physics.acc-ph) ,solenoid ,Physics - Instrumentation and Detectors ,experimental methods ,Physics::Instrumentation and Detectors ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,FOS: Physical sciences ,General Physics and Astronomy ,Solenoid ,muon: decay ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,C31 Experiments using charged lepton beams ,Momentum ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Sensitivity (control systems) ,010306 general physics ,Physics ,Muon ,muon: magnetic moment ,Magnetic moment ,Anomalous magnetic dipole moment ,muon: beam ,010308 nuclear & particles physics ,J-PARC Lab ,Instrumentation and Detectors (physics.ins-det) ,sensitivity ,Magnetic field ,muon: electric moment ,beam emittance: transverse ,magnetic moment: anomaly ,Electric dipole moment ,electric moment ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,High Energy Physics::Experiment ,C07 Particle properties - Abstract
This paper introduces a new approach to measure the muon magnetic moment anomaly $a_{\mu} = (g-2)/2$, and the muon electric dipole moment (EDM) $d_{\mu}$ at the J-PARC muon facility. The goal of our experiment is to measure $a_{\mu}$ and $d_{\mu}$ using an independent method with a factor of 10 lower muon momentum, and a factor of 20 smaller diameter storage-ring solenoid compared with previous and ongoing muon $g-2$ experiments with unprecedented quality of the storage magnetic field. Additional significant differences from the present experimental method include a factor of 1,000 smaller transverse emittance of the muon beam (reaccelerated thermal muon beam), its efficient vertical injection into the solenoid, and tracking each decay positron from muon decay to obtain its momentum vector. The precision goal for $a_{\mu}$ is statistical uncertainty of 450 part per billion (ppb), similar to the present experimental uncertainty, and a systematic uncertainty less than 70 ppb. The goal for EDM is a sensitivity of $1.5\times 10^{-21}~e\cdot\mbox{cm}$., Comment: 24 pages, 14 figures
- Published
- 2019
- Full Text
- View/download PDF
10. Optimization of detectors for the ILC
- Author
-
Taikan Suehara
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,International Linear Collider ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Detector ,Electroweak interaction ,01 natural sciences ,law.invention ,Reliability (semiconductor) ,law ,detector optimization ,0103 physical sciences ,Electronic engineering ,Higgs boson ,Physics::Accelerator Physics ,Silicon detector ,High Energy Physics::Experiment ,Vertex detector ,010306 general physics ,Collider - Abstract
International Linear Collider (ILC) is a next-generation e + e − linear collider to explore Higgs, Beyond-Standard-Models, top and electroweak particles with great precision. We are optimizing our two detectors, International Large Detector (ILD) and Silicon Detector (SiD) to maximize the physics reach expected in ILC with reasonable detector cost and good reliability. The optimization study on vertex detectors, main trackers and calorimeters is underway. We aim to conclude the optimization to establish final designs in a few years, to finish detector TDR and proposal in reply to expected “green sign” of the ILC project.
- Published
- 2016
- Full Text
- View/download PDF
11. EUDAQ $-$ A Data Acquisition Software Framework for Common Beam Telescopes
- Author
-
A. Irles, D. Barney, M. Keil, K. Kruger, Arnulf Quadt, Joern Grosse-Knetter, Hendrik Jansen, H. Schreeck, M. Benoit, I. M. Gregor, P. Wieduwilt, Jan Dreyling-Eschweiler, J. S. Keller, Jens Weingarten, Szymon Kulis, P. Ahlburg, Y. W. Liu, Andre Rummler, J. Kvasnicka, Joe Kroll, H. Augustin, Thomas Eichhorn, I. Rubinsky, Jens Janssen, E. Corrin, Carlos Marinas, J. S. Lange, P. Schütze, Moritz Kiehn, D. Dannheim, J. H. Arling, U. Stolzenberg, H. Perrey, G. Troska, M. Varga-Kofarago, Tobias Bisanz, Paolo Martinengo, Andreas Nürnberg, Simon Spannagel, Richard Peschke, Felix Reidt, Marcel Michael Stanitzki, David Cussans, F. Lütticke, D. Pohl, Thorben Quast, M. Suljic, Hyun-Chul Kim, D. Haas, Taikan Suehara, B. Paschen, L. Huth, A. Fiergolski, Enrico Rossi, Daniel Pitzl, Benjamin Schwenker, S. Arfaoui, Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Physics - Instrumentation and Detectors ,Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases) ,data acquisition ,Data management ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,030218 nuclear medicine & medical imaging ,High Energy Physics - Experiment (hep-ex) ,0302 clinical medicine ,Data acquisition ,beam [charged particle] ,Particle tracking detectors ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,hardware ,Detectors and Experimental Techniques ,physics.ins-det ,Instrumentation ,Mathematical Physics ,Data processing ,Data stream mining ,Physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,control system ,Charged particle beam ,databases) ,Particle Physics - Experiment ,Computer hardware ,performance ,architecture ,Data acquisition system for beam tests [5] ,FOS: Physical sciences ,algorithms ,programming ,03 medical and health sciences ,Calorimeters ,charged particle: beam ,0103 physical sciences ,ddc:530 ,ddc:610 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,hep-ex ,010308 nuclear & particles physics ,business.industry ,Detector control systems (detector and experiment monitoring and slow-control systems ,Data acquisition concepts ,Data flow diagram ,data management ,business ,Beam (structure) - Abstract
EUDAQ is a generic data acquisition software developed for use in conjunction with common beam telescopes at charged particle beam lines. Providing high-precision reference tracks for performance studies of new sensors, beam telescopes are essential for the research and development towards future detectors for high-energy physics. As beam time is a highly limited resource, EUDAQ has been designed with reliability and ease-of-use in mind. It enables flexible integration of different independent devices under test via their specific data acquisition systems into a top-level framework. EUDAQ controls all components globally, handles the data flow centrally and synchronises and records the data streams. Over the past decade, EUDAQ has been deployed as part of a wide range of successful test beam campaigns and detector development applications., Comment: 32 pages, 11 figures
- Published
- 2019
- Full Text
- View/download PDF
12. New precise measurements of muonium hyperfine structure at J-PARC MUSE
- Author
-
S. Choi, Tsutomu Mibe, D. Kawall, Yasuhiro Ueno, D. Tomono, Y. Matsudate, Kanetada Nagamine, Ken-ichi Sasaki, T. Yamazaki, Yasuhiro Miyake, K. S. Tanaka, M. Matama, S. Nishimura, T. Yamanaka, T. U. Ito, K. M. Kojima, T. Tanaka, M. Yoshida, Y. Tsutsumi, M. Tajima, Y. Higashi, Tomoyuki Higuchi, K. Ueno, Hiromi Iinuma, Ryosuke Kadono, K. Ishida, Eiko Torikai, Yasuyuki Matsuda, T. Mizutani, T. Ito, S. Kanda, Toru Ogitsu, Taikan Suehara, Patrick Strasser, K. Kubo, M. Iwasaki, D. Yagi, Hirohiko M. Shimizu, O. Kamigaito, Akihiro Koda, Tamaki Yoshioka, J. Tojo, H. A. Torii, N. Saito, Yutaka Ikedo, M. Aoki, Naritoshi Kawamura, Akihiro Toyoda, Hiromasa Yasuda, Masaaki Kitaguchi, Koichiro Shimomura, K. Kawagoe, Y. Fukao, M. Abe, S. Seo, and A. Yamamoto
- Subjects
Physics ,Muon ,Magnetic moment ,010308 nuclear & particles physics ,Physics beyond the Standard Model ,QC1-999 ,Muonium ,01 natural sciences ,Nuclear physics ,0103 physical sciences ,Physics::Accelerator Physics ,J-PARC ,Physics::Atomic Physics ,010306 general physics ,Ground state ,Hyperfine structure ,Beam (structure) - Abstract
High precision measurements of the ground state hyperfine structure (HFS) of muonium is a stringent tool for testing bound-state quantum electrodynamics (QED) theory, determining fundamental constants of the muon magnetic moment and mass, and searches for new physics. Muonium is the most suitable system to test QED because both theoretical and experimental values can be precisely determined. Previous measurements were performed decades ago at LAMPF with uncertainties mostly dominated by statistical errors. At the J-PARC Muon Science Facility (MUSE), the MuSEUM collaboration is planning complementary measurements of muonium HFS both at zero and high magnetic field. The new high-intensity muon beam that will soon be available at H-Line will provide an opportunity to improve the precision of these measurements by one order of magnitude. An overview of the different aspects of these new muonium HFS measurements, the current status of the preparation for high-field measurements, and the latest results at zero field are presented.
- Published
- 2019
13. Performance evaluation of a silicon strip detector for positrons/electrons from a pulsed a muon beam
- Author
-
Norihito Saito, T. Yamanaka, Y. Sato, Masahiro Ikeno, Osamu Sasaki, S. Nishimura, H. Wauke, Tomohisa Uchida, Toshimi Suda, Masayoshi Shoji, T. Ushizawa, H. Sendai, Yosuke Honda, Taikan Suehara, Hirokazu Ikeda, M. Tanaka, Takashi Kohriki, Tsutomu Mibe, K. Namba, N. Sato, J. Tojo, Koichiro Shimomura, T. Takatomi, T. Aoyagi, Tatsuya Kume, Kiyotomo Kawagoe, S. Shirabe, Tamaki Yoshioka, and Kyo Tsukada
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Muonium ,FOS: Physical sciences ,Electron ,01 natural sciences ,High Energy Physics - Experiment ,030218 nuclear medicine & medical imaging ,law.invention ,High Energy Physics - Experiment (hep-ex) ,03 medical and health sciences ,0302 clinical medicine ,Optics ,law ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Instrumentation ,Mathematical Physics ,Physics ,Muon ,010308 nuclear & particles physics ,business.industry ,Detector ,Particle accelerator ,Instrumentation and Detectors (physics.ins-det) ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,J-PARC ,business ,Beam (structure) ,Lepton - Abstract
A high-intensity pulsed muon beam is becoming available at the at the Japan Proton Accelerator Research Complex (J-PARC). Many experiments to study fundamental physics using this high-intensity muon beam are proposed. An experiment to measure the muon magnetic moment anomaly ($g-2$) and the muon electric dipole moment (EDM) is one of these experiments and it requires a tracking detector for positrons from muon decay. Fine segmentation is required in a detector to tolerate the high rate of positrons. The time resolution is required to be much better than the muon anomalous spin precession period while a buffer depth of a front-end electronics needs to be much longer than the accelerated muon lifetime. Requirements of this detector also meet requirements of a measurement of the muonium hyperfine structure interval at the J-PARC and another experiment to measure the proton charge radius at Tohoku University. We have developed a single-sided silicon strip sensor with a 190 $\mu$m pitch, a front-end electronics with a sampling rate of 200 MHz and a buffer memory depth of 8192, and a data acquisition system based on DAQ-Middleware for the J-PARC muon $g-2$/EDM experiment. We have fabricated detector modules consisting of this sensor and the front-end electronics. Performance of fabricated detector modules was evaluated at a laboratory and a beam test using the positron beam at Tohoku University. The detector is confirmed to satisfy all requirements of the experiments except for the time walk, which will be solved by the next version of a front-end electronics., Comment: 18 pages, 17 figures
- Published
- 2020
- Full Text
- View/download PDF
14. LCFIPlus: A framework for jet analysis in linear collider studies
- Author
-
Tomohiko Tanabe and Taikan Suehara
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,International Linear Collider ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,01 natural sciences ,Particle identification ,High Energy Physics - Experiment ,law.invention ,High Energy Physics - Experiment (hep-ex) ,law ,0103 physical sciences ,010306 general physics ,Collider ,Instrumentation ,ComputingMethodologies_COMPUTERGRAPHICS ,Physics ,Jet (fluid) ,Compact Linear Collider ,010308 nuclear & particles physics ,Detector ,Control engineering ,Instrumentation and Detectors (physics.ins-det) ,Identification (information) ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Dynamical simulation - Abstract
We report on the progress in flavor identification tools developed for a future $e^+e^-$ linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report., Comment: 12 pages, 2 figures
- Published
- 2016
- Full Text
- View/download PDF
15. Development of a Highly Granular Silicon-Tungsten ECAL for the ILD
- Author
-
J. David, Taikan Suehara, Vladislav Balagura, J. C. Brient, R. Cornat, Yuji Sudo, J.-E. Augustin, Tamaki Yoshioka, Kiyotomo Kawagoe, T. Tomita, Ch. de la Taille, V. Boudry, L. Lavergne, J. Daniel, Chihiro Kozakai, Didier Lacour, T. Frisson, R. Pöschl, Shion Chen, P. Ghislain, and S. Callier
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Physics::Instrumentation and Detectors ,01 natural sciences ,7. Clean energy ,law.invention ,law ,0103 physical sciences ,Electronic engineering ,Aerospace engineering ,010306 general physics ,Collider ,ECAL ,Physics ,Calorimeter ,Jet (fluid) ,010308 nuclear & particles physics ,business.industry ,Detector ,Upgrade ,ILC ,High Energy Physics::Experiment ,Granularity ,Silicon Detector ,business ,Energy (signal processing) ,Beam (structure) - Abstract
The excellent jet energy resolution required for precise physics measurements at ILC is achievable using a Particle Flow Method and highly granular calorimeters. As it was shown by CALICE international R&D collaboration, the silicon-tungsten imaging electromagnetic calorimeter provides the best granularity, stability and resolution of jet energy measurement. After proving the calorimeter concept with physical prototypes in 2005–2011, an emphasis is now moved to building a technological prototype satisfying challenging requirements. All chosen technologies should be reliable and scalable for a mass production of a future detector. We report on the current status of R&D, in particular, on beam and charge injection tests of the technological prototype and on the tests of ECAL mechanical structure. We also report on our plans to build a realistic prototype detector and test it together with an existing carbon fiber-tungsten mechanical structure. A similar silicon-tungsten calorimeter technology has been recently proposed for the Phase 2 upgrade of CMS end-cap calorimeter and future high energy circular collider projects.
- Published
- 2016
- Full Text
- View/download PDF
16. Hadronic Energy Resolution of a Combined High Granularity Scintillator Calorimeter System
- Author
-
Djamel Eddine Boumediene, T. Tubokawa, P. Buhmann, C. Neubüser, H. Videau, M. Rubio-Roy, E. Brianne, I. Sekiya, M. Danilov, F. Krivan, M. Götze, E. Calvo Alamillo, Kiyotomo Kawagoe, K. Francis, N. van der Kolk, T. Sakuma, H. Yamashiro, C. Graf, P. Göttlicher, A. Drutskoy, Alberto Ribon, S. Bilokin, Taikan Suehara, Shih-Fu Chang, Huong Lan Tran, Tamaki Yoshioka, V. Balagura, G. C. Blazey, M. Kovalcuk, J-C. Brient, D. H. Kim, K. Kotera, A. Provenza, Matthew Wing, M. Janata, V. Ivantchenko, B. Li, Lei Xia, O. Hartbrich, Frank Simon, M. Nishiyama, D. Yu, C. Zeitnitz, Gunter Folger, Roman Pöschl, J. J. Navarrete, John Apostolakis, Frédéric Magniette, Marina Chadeeva, M. Frotin, A. Verdugo, J. Nanni, M. Matysek, J. Smolik, M. Anduze, S. Schuwalow, H. Ch Schultz-Coulon, D. Lomidze, A. Kaplan, Y. D. Oh, K. Gadow, R. Cornat, E. Popova, Vladimir Rusinov, Graham Wilson, E. Tarkovsky, J. C. Marin, V. Zutshi, I. Polak, J. Zuklin, K. Kruger, J. Kvasnicka, M. Reinecke, V. Uzhinskiy, T. H. Tran, A.S. Dyshkant, S. Lu, D. Jeans, M. C. Fouz, J. Puerta Pelayo, V. Francais, Abdul Rauf Khan, S. Laurien, S. Uozumi, Vaclav Vrba, A. Elkhalii, K. Shpak, D. J. Kong, J. Bonis, Dirk Zerwas, O. Bach, J. Zálešák, S. Tozuka, E. Becheva, Y. Israeli, Erika Garutti, F. Richard, J. Cvach, E. Edy, A. Irles, F. Sefkow, Yuji Sudo, Jose Repond, L. Emberger, Vincent Boudry, M. Gabriel, H. Windel, Tohru Takeshita, M. Szalay, A. Ebrahimi, F. Gastaldi, A. Thiebault, Laboratoire de Physique de Clermont (LPC), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), CALICE, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Photomultiplier ,data analysis method ,energy resolution: momentum dependence ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Hadron ,pi-: energy spectrum ,FOS: Physical sciences ,Scintillator ,01 natural sciences ,programming ,030218 nuclear medicine & medical imaging ,Nuclear physics ,pi: irradiation ,03 medical and health sciences ,0302 clinical medicine ,statistical analysis ,calorimeter: hadronic ,0103 physical sciences ,ddc:610 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,Nuclear Experiment ,physics.ins-det ,Instrumentation ,Mathematical Physics ,scintillation counter ,Physics ,Muon ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,CALICE ,showers: spatial distribution ,Instrumentation and Detectors (physics.ins-det) ,calorimeter: electromagnetic ,statistics ,Scintillation counter ,GEANT ,High Energy Physics::Experiment ,Granularity ,muon: tracking detector ,Energy (signal processing) - Abstract
This paper presents results obtained with the combined CALICE Scintillator Electromagnetic Calorimeter, Analogue Hadronic Calorimeter and Tail Catcher & Muon Tracker, three high granularity scintillator-SiPM calorimeter prototypes. The response of the system to pions with momenta between 4 GeV/c and 32 GeV/c is analysed, including the energy response, resolution, and longitudinal shower profiles. The results of a software compensation technique based on weighting according to hit energy are compared to those of a standard linear energy reconstruction. The results are compared to predictions of the GEANT4 physics lists QGSP_BERT_HP and FTFP_BERT_HP., 31 pages, 41 figures
- Published
- 2018
- Full Text
- View/download PDF
17. The Direct Spectroscopy of Positronium Hyperfine Structure Using a Sub-THz Gyrotron
- Author
-
Haruo Saito, Yoshinori Tatematsu, Toshitaka Idehara, T. Yamazaki, Shoji Asai, A. Miyazaki, Isamu Ogawa, Taikan Suehara, Toshio Namba, and Tomio Kobayashi
- Subjects
Physics ,Radiation ,Zeeman effect ,Condensed Matter Physics ,Positronium ,law.invention ,symbols.namesake ,Resonator ,law ,Quantum mechanics ,Gyrotron ,Bound state ,symbols ,Physics::Atomic Physics ,Electrical and Electronic Engineering ,Atomic physics ,Spectroscopy ,Instrumentation ,Hyperfine structure ,Diffraction grating - Abstract
Positronium is an ideal system for research on Quantum Electrodynamics (QED), especially in a bound state. A discrepancy of 3.9 standard deviations has been found between the measured hyperfine structure (Ps-HFS) and the QED predictions. This may be due to the contribution of unknown new physics or common systematic effects in previous measurements, in all of which the Zeeman effect was used. We propose a new method to directly measure the Ps-HFS using a high power gyrotron. We compare two resonators which have been developed to supply sufficient power to drive the direct transition, a Fabry-Perot resonator and a ring resonator with a diffraction grating. We plan to perform first direct measurement of Ps-HFS within the next six months.
- Published
- 2013
- Full Text
- View/download PDF
18. Towards a technological prototype for a high-granularity electromagnetic calorimeter for future lepton colliders
- Author
-
Taikan Suehara
- Subjects
Physics ,History ,Particle physics ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,01 natural sciences ,Computer Science Applications ,Education ,Nuclear physics ,Electromagnetic calorimeter ,0103 physical sciences ,High Energy Physics::Experiment ,Granularity ,Detectors and Experimental Techniques ,010306 general physics ,Lepton - Abstract
The CALICE collaboration is preparing large scale prototypes for highly granular calorimeters for detectors to be operated at a future lepton collider. Currently a prototype of a silicon-tungsten electromagnetic calorimeter SiW-ECAL will be assembled which in terms of dimensions and layout meets already most of the requirements given by the lepton collider physics programme and hence the detector design. In particular the front end electronics will be embedded into the layer structure of the calorimeter and have to fit within alveolar layers with less than 1 cm in height. In this paper the design of the prototype and the steps towards the realisation are presented. The presented technology plays also a key role in the upgrades of the LHC Experiments CMS and ATLAS.
- Published
- 2017
19. SiW ECAL for future e+ e− collider
- Author
-
M. Rubio-Roy, Annick Lleres, V. Balagura, S. Bilokin, L. Lavergne, Andreas Psallidas, J-C. Brient, Manqi Ruan, C. de la Taille, Thi Hien Doan, S K Jain, Andrey Pozdnyakov, R. Poeschl, A. Thiebault, M. Frotin, J. Bonis, Dan Yu, Taikan Suehara, Sh. Jain, Didier Lacour, S. Callier, K. Shpak, James S. Wright, N. Seguin-Moreau, T. Cheng, J. Nanni, Luca Mastrolorenzo, Frédéric Magniette, H. Hirai, Vincent Boudry, F. Gastaldi, R. Cornat, Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Omega, Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), École polytechnique (X), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Physics - Instrumentation and Detectors ,Silicon ,Physics::Instrumentation and Detectors ,chemistry.chemical_element ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,030218 nuclear medicine & medical imaging ,law.invention ,Nuclear physics ,03 medical and health sciences ,High Energy Physics - Experiment (hep-ex) ,0302 clinical medicine ,law ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,Collider ,physics.ins-det ,Instrumentation ,Mathematical Physics ,Physics ,Large Hadron Collider ,Pixel ,hep-ex ,010308 nuclear & particles physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Electromagnetic calorimeter ,Beamline ,chemistry ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Infrastructure for advanced calorimeters [14] ,Particle Physics - Experiment - Abstract
Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We discuss the tests of the first three 18x18 cm$^2$ layers segmented into 1024 pixels of the technological prototype of the silicon-tungsten electromagnetic calorimeter for a future $e^+e^-$ collider. The tests have beem performed in November 2015 at CERN SPS beam line., Comment: Proceedings for "Instrumentation for Colliding Beam Physics" (INSTR17) conference, 27 February - 3 March 2017, Novosibirsk, Russia
- Published
- 2017
- Full Text
- View/download PDF
20. Direct Measurement of Positronium HyperFine Structure: ∼ A New Horizon of Precision Spectroscopy Using Gyrotrons ∼
- Author
-
Takayuki Yamazaki, Toshio Namba, Takatoshi Idehara, S. Sabchevski, A. Miyazaki, Tomio Kobayashi, Isamu Ogawa, Shoji Asai, Taikan Suehara, and Haruhiko Saito
- Subjects
Physics ,Radiation ,Terahertz radiation ,Physics beyond the Standard Model ,Condensed Matter Physics ,Measure (mathematics) ,Positronium ,law.invention ,law ,Gyrotron ,Bound state ,Classical electromagnetism ,Electrical and Electronic Engineering ,Atomic physics ,Instrumentation ,Hyperfine structure - Abstract
Positronium is an ideal system for research on QED, especially in a bound state. A discrepancy (3.9σ) is found recently between measured HFS values and the QED prediction (including up-to O(α3 log α − 1), where α is the fine-structure constant.). It might be due to a contribution of unknown new physics or common systematic problems in all the previous measurements. A new method to measure HFS directly is performed using a high power gyrotron. The transition from ortho-positronium to para-positronium has been observed with 5 σ CL, which is the first observation of M1 transition in (sub)Terahertz region. New technologies of high power gyrotrons are developed for precision spectroscopy.
- Published
- 2012
- Full Text
- View/download PDF
21. Shintake Monitor Nanometer Beam Size Measurement and Beam Tuning
- Author
-
Nobuhiro Terunuma, Toshiaki Tauchi, Sakae Araki, Jacqueline Yan, Masahiro Oroku, Toshiyuki Okugi, Yoshio Kamiya, Taikan Suehara, Sachio Komamiya, Junji Urakawa, Takashi Yamanaka, and Youhei Yamaguchi
- Subjects
Physics ,Luminosity (scattering theory) ,business.industry ,Detector ,Phase (waves) ,Accelerator ,Physics and Astronomy(all) ,Beam size ,Luminosity ,Optics ,ILC ,Interference (communication) ,Systems design ,Electron linear collider ,Chromaticity ,business ,Focus (optics) ,Laser interference ,Beam (structure) - Abstract
A novel final focus system design featuring the Local Chromaticity Correction scheme has beenproposed for ILC. This is to be verified at ATF2, a test facility for ILC, through focusing an e-beam down to the design vertical beam size (“σy”) of 37 nm. Shintake Beam Size Monitor (“IPBSM”),installed at the virtual interaction point of ATF2, is the only existing device capable of measuring σy below 100 nm, making it indispensable for achieving the goals of ATF2 and a strong candidate for R&D at future linear colliders. This is attributed to its ingenious technique of scanning the phase oflaser interference fringes relative to the e-beam. Beam sizes are derived from the resulting Compton signal modulation measured by a downstream detector. Having been upgraded in a variety of ways since its first debut at FFTB, Shintake Monitor is capable of measuring a wide range of σy from 25 nm to 6 μm with better than 10% resolution. This paper describes the system's design, role in beam tuning, and various hardware upgrades to further improve its performance.
- Published
- 2012
- Full Text
- View/download PDF
22. A study of silicon sensor for the ILD ECAL
- Author
-
Taikan Suehara, Tamaki Yoshioka, H. Sumida, Yuji Sudo, Hiraku Ueno, Yoshiyuki Miyazaki, H. Hirai, Shunsuke Takada, T. Tomita, and Kiyotomo Kawagoe
- Subjects
Materials science ,Silicon ,chemistry ,business.industry ,Optoelectronics ,chemistry.chemical_element ,business - Published
- 2015
- Full Text
- View/download PDF
23. A study of the measurement precision of the Higgs boson decaying into tau pairs at the ILC
- Author
-
Tohru Takahashi, Keisuke Fujii, Tomohiko Tanabe, Shin ichi Kawada, and Taikan Suehara
- Subjects
Physics ,Particle physics ,Luminosity (scattering theory) ,Physics and Astronomy (miscellaneous) ,International Linear Collider ,Branching fraction ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,Technical design ,High Energy Physics - Experiment ,Cross section (physics) ,High Energy Physics - Experiment (hep-ex) ,Higgs boson ,Measurement precision ,High Energy Physics::Experiment ,Engineering (miscellaneous) ,Lepton - Abstract
We evaluate the measurement precision of the production cross section times the branching ratio of the Higgs boson decaying into tau lepton pairs at the International Linear Collider (ILC). We analyze various final states associated with the main production mechanisms of the Higgs boson, the Higgs-strahlung and WW-fusion processes. The statistical precision of the production cross section times the branching ratio is estimated to be 2.6% and 6.9% for the Higgs-strahlung andWW-fusion processes, respectively, with the nominal integrated luminosities assumed in the ILC Technical Design Report; the precision improves to 1.0% and 3.4% with the running scenario including possible luminosity upgrades. The study provides a reference performance of the ILC for future phenomenological analyses., Comment: 10 pages, 6 figures, 9 tables, revised from v2
- Published
- 2015
- Full Text
- View/download PDF
24. Tracking within Hadronic Showers in the CALICE SDHCAL prototype using a Hough Transform Technique
- Author
-
R. Cornat, H. Hirai, Frank Simon, T. H. Tran, A. Provenza, H. Mathez, K. Kruger, S. Lu, E. Brianne, Zhenan Liu, Taikan Suehara, Kiyotomo Kawagoe, W. Park, Francois Corriveau, Marina Chadeeva, P. Göttlicher, D. Yu, L. Caponetto, J. C. Marin, Qian Yue, S. Callier, A. Pingault, G. Grenier, E. Becheva, J. C. Brient, Dirk Zerwas, Djamel Eddine Boumediene, P. Goecke, M. Rubio-Roy, C. Combaret, Arnaud Steen, N. van der Kolk, A. Ebrahimi, Michael Tytgat, C. Carloganu, F. Krivan, G. Garillot, N. Zaganidis, Shih-Chang Lee, I. Polak, S. Mannai, S. Bilokin, E. Calvo Alamillo, A. Petrukhin, F. Gastaldi, A. Thiebault, G. Cho, Y. Li, R. Eté, J. Cvach, Vladislav Balagura, F. Sefkow, Y. Israeli, M. Gabriel, J. Puerta-Pelayo, J. J. Navarrete, Frédéric Magniette, Laurent Mirabito, V. Boudry, M. Reinecke, J. Kvasnicka, A. Verdugo, L. Raux, A. Irles, K. Kotera, C. Graf, H. Windel, J. Zálešák, N. Lumb, N. Seguin-Moreau, M. Kovalcuk, Y. Wang, Zhi Deng, E. Cortina Gil, Ch. de la Taille, Yuji Sudo, S. Schuwalow, H. Videau, Zishuo Yang, Vaclav Vrba, J. C. Ianigro, M. Szalay, Huong Lan Tran, K. Gadow, G. Martin-Chassard, J. Berenguer Antequera, J. Nanni, T. Kurca, R. Kieffer, Imad Baptiste Laktineh, H. Sumida, V. Buridon, F. Dulucq, Tamaki Yoshioka, O. Hartbrich, Manqi Ruan, R. Han, J. Bonis, J. Zuklin, M. Anduze, M. C. Fouz, V. Francais, K. Shpak, R. Pöschl, Francois Richard, J. Smolik, S. Vallecorsa, D. W. Kim, M. Janata, S. Cauwenbergh, B. Li, C. Neubüser, O. Bach, Yacine Haddad, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Organisation de Micro-Électronique Générale Avancée (OMEGA), École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), CALICE, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)
- Subjects
data analysis method ,Particle physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,FOS: Physical sciences ,showers: hadronic ,Tracking (particle physics) ,01 natural sciences ,High Energy Physics - Experiment ,030218 nuclear medicine & medical imaging ,Hough transform ,law.invention ,High Energy Physics - Experiment (hep-ex) ,Calorimeters ,Gaseous detectors ,03 medical and health sciences ,0302 clinical medicine ,law ,calorimeter: hadronic ,numerical methods ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,CALICE ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,ddc:610 ,Detectors and Experimental Techniques ,Calorimeter methods ,numerical calculations ,physics.ins-det ,Instrumentation ,Mathematical Physics ,Physics ,hep-ex ,track data analysis ,010308 nuclear & particles physics ,Track (disk drive) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Calorimeter ,Physics and Astronomy ,High Energy Physics::Experiment ,Granularity ,Particle Physics - Experiment ,Energy (signal processing) - Abstract
Journal of Instrumentation 12(05), P05009 (2017). doi:10.1088/1748-0221/12/05/P05009, The high granularity of the CALICE Semi-Digital Hadronic CALorimeter (SDHCAL)provides the capability to reveal the track segments present in hadronic showers. These segmentsare then used as a tool to probe the behaviour of the active layers in situ, to better reconstructthe energy of these hadronic showers and also to distinguish them from electromagnetic ones. Inaddition, the comparison of these track segments in data and the simulation helps to discriminateamong the different shower models used in the simulation. To extract the track segments in theshowers recorded in the SDHCAL, a Hough Transform is used after being adapted to the presenceof the dense core of the hadronic showers and the SDHCAL active medium structure., Published by Inst. of Physics, London
- Published
- 2017
- Full Text
- View/download PDF
25. Progress in the development of the vertex detector with fine pixel CCD at the ILC
- Author
-
Yasuhiro Sugimoto, A. Ishikawa, A. Dubey, Eriko Kato, Hayato Ikeda, Akiya Miyamoto, S. Ito, Hitoshi Yamamoto, Constantino Calancha Paredes, Tatsuya Mori, Taikan Suehara, and H. Sato
- Subjects
Thesaurus (information retrieval) ,Development (topology) ,Pixel ,Computer science ,Computer graphics (images) ,Vertex detector - Published
- 2014
- Full Text
- View/download PDF
26. Higgs Boson Decays to Tau Pairs at the ILC with the ILD Detector
- Author
-
Tomohiko Tanabe, Taikan Suehara, Shin-ichi Kawada, Keisuke Fujii, and Tohru Takahashi
- Subjects
Physics ,Particle physics ,Detector ,Higgs boson - Published
- 2014
- Full Text
- View/download PDF
27. Experimental validation of a novel compact focusing scheme for future energy-frontier linear lepton colliders
- Author
-
Yoshio Kamiya, T. Okugi, M. Oroku, C. Blanch, Glenn Christian, Tadayuki Takahashi, Y. L. Yamaguchi, M. Shevelev, Pavel Karataev, Mark Woodley, Hirotaka Shimizu, T. Omori, Jenny Nelson, Y. J. Park, K. Lekomtsev, Philip Burrows, J. Alabau-Gonzalvo, G.A. Blair, Takashi Naito, Manfred Wendt, Young-Im Kim, Laurence Nevay, M. R. Davis, Eun-San Kim, Hitoshi Hayano, N. Geffroy, T. Akagi, Douglas Bett, N. Phinney, Michael Hildreth, H. Garcia-Morales, Rogelio Tomás, R. Tanaka, Junji Urakawa, Yoshihisa Iwashita, Y. Honda, Frank Zimmermann, Tatsuya Kume, Andrzej Wolski, A. Jeremie, Stewart Boogert, Glen White, S. Jang, Arpit Rawankar, Ryuhei Sugahara, Sachio Komamiya, B. Bolzon, Y. Renier, Daniel Schulte, T. Sanuki, R. Ainsworth, J. Snuverink, Takashi Yamanaka, S. Kuroda, J. Pfingstner, Eduardo Marin, C.M. Spencer, M. Warden, H. S. Kim, D. McCormick, N. Blaskovic-Kraljevic, Briant Lam, H. Park, K. Kubo, Andrei Seryi, Laura Corner, J. Yan, Javier Resta-López, Sha Bai, Sheng Guang Liu, J.-Y. Huang, Nobuhiro Terunuma, Alexander Aryshev, Colin Perry, Kaoru Yokoya, Angeles Faus-Golfe, Jie Gao, Toshiaki Tauchi, Alexey Lyapin, Sakae Araki, A. Y. Heo, Masafumi Fukuda, Philip Bambade, O. R. Blanco, Taikan Suehara, M.C. Ross, Seyoung Kim, Mika Masuzawa, Deepa Angal-Kalinin, W. H. Hwang, Dou Wang, KEK (High energy accelerator research organization), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences [Changchun Branch] (CAS), ILC, Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), European Organization for Nuclear Research (CERN), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), SLAC National Accelerator Laboratory (SLAC), Stanford University, and ATF
- Subjects
Physics ,Particle physics ,010308 nuclear & particles physics ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Bandwidth (signal processing) ,General Physics and Astronomy ,Experimental validation ,Beam optics ,01 natural sciences ,7. Clean energy ,Linear particle accelerator ,law.invention ,Nuclear physics ,law ,0103 physical sciences ,Cathode ray ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Physics::Accelerator Physics ,010306 general physics ,Collider ,Lepton - Abstract
A novel scheme for the focusing of high-energy leptons in future linear colliders was proposed in 2001 [ P. Raimondi and A. Seryi , Phys. Rev. Lett. 86 , 3779 ( 2001 ) ]. This scheme has many advantageous properties over previously studied focusing schemes, including being significantly shorter for a given energy and having a significantly better energy bandwidth. Experimental results from the ATF2 accelerator at KEK are presented that validate the operating principle of such a scheme by demonstrating the demagnification of a 1.3 GeV electron beam down to below 65 nm in height using an energy-scaled version of the compact focusing optics designed for the ILC collider.
- Published
- 2014
- Full Text
- View/download PDF
28. Direct Observation of the Hyperfine Transition of the Ground State Positronium
- Author
-
Taikan Suehara, A. Miyazaki, Toshitaka Idehara, T. Yamazaki, Toshio Namba, T. Kobayashi, Svilen Sabchevski, Haruo Saito, Isamu Ogawa, and Shoji Asai
- Subjects
Physics ,High Energy Physics - Experiment (hep-ex) ,Atomic Physics (physics.atom-ph) ,Direct observation ,General Physics and Astronomy ,FOS: Physical sciences ,Atomic physics ,Ground state ,Hyperfine structure ,Positronium ,High Energy Physics - Experiment ,Physics - Atomic Physics - Abstract
We report the first direct measurement of the hyperfine transition of the ground state positronium. The hyperfine structure between ortho-positronium and para-positronium is about 203 GHz. We develop a new optical system to accumulate about 10 kW power using a gyrotron, a mode converter, and a Fabry-P\'erot cavity. The hyperfine transition has been observed with a significance of 5.4 standard deviations. The transition probability is measured to be $A={3.1}_{\ensuremath{-}1.2}^{+1.6}\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}\text{ }\text{ }{\mathrm{s}}^{\ensuremath{-}1}$ for the first time, which is in good agreement with the theoretical value of $3.37\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}\text{ }\text{ }{\mathrm{s}}^{\ensuremath{-}1}$.
- Published
- 2012
29. Discrimination of New Physics Models with the International Linear Collider
- Author
-
Yosuke Takubo, Tomoyuki Saito, Shigeki Matsumoto, Keisuke Fujii, Hideo Itoh, Hitoshi Yamamoto, Masaki Asano, R. S. Hundi, Nobuchika Okada, and Taikan Suehara
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,International Linear Collider ,Physics::Instrumentation and Detectors ,Physics beyond the Standard Model ,Dark matter ,FOS: Physical sciences ,Supersymmetry ,Nuclear physics ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,WIMP ,Weakly interacting massive particles ,Higgs boson ,Physics::Accelerator Physics ,High Energy Physics::Experiment - Abstract
The large hadron collider (LHC) is anticipated to provide signals of new physics at the TeV scale, which are likely to involve production of a WIMP dark matter candidate. The international linear collider (ILC) is to sort out these signals and lead us to some viable model of the new physics at the TeV scale. In this article, we discuss how the ILC can discriminate new physics models, taking the following three examples: the inert Higgs model, the supersymmetric model, and the littlest Higgs model with T-parity. These models predict dark matter particles with different spins, 0, 1/2, and 1, respectively, and hence comprise representative scenarios. Specifically, we focus on the pair production process, e+e- -> chi+chi- -> chi0chi0W+W-, where chi0 and chi+- are the WIMP dark matter and a new charged particle predicted in each of these models. We then evaluate how accurately the properties of these new particles can be determined at the ILC and demonstrate that the ILC is capable of identifying the spin of the new charged particle and discriminating these models., 30 pages, 9 figures, submitted to Physical Review D
- Published
- 2011
30. Precise measurement of positronium hyperfine splitting using the Zeeman effect
- Author
-
Y. Sasaki, Toshio Namba, Taikan Suehara, A. Ishida, Tomio Kobayashi, Shoji Asai, Haruo Saito, Akira Yamamoto, M. Yoshida, Ginga Akimoto, and Kenichi Tanaka
- Subjects
Physics ,Nuclear and High Energy Physics ,Zeeman effect ,Ideal system ,Atomic Physics (physics.atom-ph) ,Physics beyond the Standard Model ,FOS: Physical sciences ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Positronium ,Physics - Atomic Physics ,High Energy Physics - Experiment ,symbols.namesake ,High Energy Physics - Experiment (hep-ex) ,Bound state ,symbols ,Physics::Atomic Physics ,Physical and Theoretical Chemistry ,Atomic physics ,Hyperfine structure - Abstract
Positronium is an ideal system for the research of the quantum electrodynamics (QED) in bound state. The hyperfine splitting (HFS) of positronium, $\Delta_{\mathrm{HFS}}$, gives a good test of the bound state calculations and probes new physics beyond the Standard Model. A new method of QED calculations has revealed the discrepancy by 15\,ppm (3.9$\sigma$) of $\Delta_{\mathrm{HFS}}$ between the QED prediction and the experimental average. There would be possibility of new physics or common systematic uncertainties in the previous all experiments. We describe a new experiment to reduce possible systematic uncertainties and will provide an independent check of the discrepancy. We are now taking data and the current result of $\Delta_{\mathrm{HFS}} = 203.395\,1 \pm 0.002\,4 (\mathrm{stat.}, 12\,\mathrm{ppm}) \pm 0.001\,9 (\mathrm{sys.}, 9.5\,\mathrm{ppm})\,\mathrm{GHz} $ has been obtained so far. A measurement with a precision of $O$(ppm) is expected within a year., Comment: 8 pages, 8 figures, 2 tables, proceeding of LEAP2011, accepted by Hyperfine Interactions
- Published
- 2011
31. First millimeter-wave spectroscopy of ground-state positronium
- Author
-
Toshitaka Idehara, A. Miyazaki, Toshio Namba, T. Yamazaki, T. Kobayashi, Isamu Ogawa, Shoji Asai, Haruo Saito, Taikan Suehara, and Yoshinori Tatematsu
- Subjects
Physics ,Physics - Instrumentation and Detectors ,Atomic Physics (physics.atom-ph) ,FOS: Physical sciences ,General Physics and Astronomy ,Resonance ,Instrumentation and Detectors (physics.ins-det) ,High Energy Physics - Experiment ,Physics - Atomic Physics ,law.invention ,Positronium ,High Energy Physics - Experiment (hep-ex) ,law ,Gyrotron ,Extremely high frequency ,Atomic physics ,Ground state ,Spectroscopy ,Hyperfine structure - Abstract
We report on the first measurement of the Breit-Wigner resonance of the transition from {\it ortho-}positronium to {\it para-}positronium. We have developed an optical system to accumulate a power of over 20 kW using a frequency-tunable gyrotron and a Fabry-P\'{e}rot cavity. This system opens a new era of millimeter-wave spectroscopy, and enables us to directly determine both the hyperfine interval and the decay width of {\it p-}Ps.
- Published
- 2015
- Full Text
- View/download PDF
32. The sub-THz direct spectroscopy of positronium hyperfine splitting
- Author
-
Taikan Suehara, Haruo Saito, Toshitaka Idehara, T. Kobayashi, Isamu Ogawa, Toshio Namba, Yoshinori Tatematsu, Shoji Asai, A. Miyazaki, and T. Yamazaki
- Subjects
Physics ,History ,Terahertz radiation ,Measure (physics) ,Physics::Optics ,Radiation ,Computer Science Applications ,Education ,Positronium ,Resonator ,Bound state ,Atomic physics ,Spectroscopy ,Hyperfine structure - Abstract
The positronium hyperfine splitting is a good target to study Quantum Electrodynamics in the bound state. There is a discrepancy between precision measurements and a theoretical calculation. We are planning to directly measure the positroinum hyperfine structure for the first time. A gyrotron oscillator is used as a novel radiation source in terahertz region. A Fabry-Perot resonator is also developed to increase photon density. We have already observed the direct transition at 202.9 GHz. The direct measurement of the order of 100 ppm will be performed within about a year.
- Published
- 2013
- Full Text
- View/download PDF
33. Experiment for the first direct measurement of the hyperfine splitting of positronium
- Author
-
A. Miyazaki, Haruo Saito, A. Ishida, Y. Urushizaki, Toshio Namba, Shoji Asai, M. Yoshida, Svilen Sabchevski, Isamu Ogawa, Taikan Suehara, Toshitaka Idehara, and T. Kobayashi
- Subjects
Physics ,History ,Zeeman effect ,Quantum oscillations ,Virtual particle ,Magnetostatics ,Computer Science Applications ,Education ,Positronium ,law.invention ,symbols.namesake ,law ,Gyrotron ,Quantum electrodynamics ,Bound state ,symbols ,Physics::Atomic Physics ,Atomic physics ,Hyperfine structure - Abstract
Positronium is an ideal system for the research of the bound state QED. The hyperfine splitting of positronium (Ps-HFS: about 203 GHz) is a good tool to test QED and also sensitive to new physics beyond the Standard Model via a quantum oscillation between an ortho-Ps and a virtual photon. Previous experimental results show 3.9 σ (15 ppm) discrepancy from the QED calculation. All previous experiments used an indirect method with static magnetic field to cause Zeeman splitting (a few GHz) between triplet states of ortho-Ps, from which the HFS value was derived. One possible systematic error source of the indirect method is non-uniformity of the static magnetic field. We are developing a new direct Ps-HFS measurement system without static magnetic field. In this measurement we use a gyrotron, a novel sub-THz light source, with a high-finesse Fabry-Perot cavity to obtain enough radiation power at 203 GHz. The present status of the optimization studies and current design of the experiment are described.
- Published
- 2010
- Full Text
- View/download PDF
34. Precise measurement of the HFS of positronium using the zeeman effect I: Experimental set-up and RF system
- Author
-
Toshio Namba, Y. Sasaki, K. Kato, Shoji Asai, T. Kobayashi, A. Ishida, K Tanaka, G. Akimoto, A. Miyazaki, Akira Yamamoto, Isamu Ogawa, M. Yoshida, Svilen Sabchevski, Taikan Suehara, Toshitaka Idehara, Y. Urushizaki, and Haruo Saito
- Subjects
Physics ,History ,Zeeman effect ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,Rf system ,Computer Science Applications ,Education ,Positronium ,Set (abstract data type) ,symbols.namesake ,symbols ,Physics::Atomic Physics ,Atomic physics ,Hyperfine structure - Abstract
Positronium is a QCD-free system and the measurement of its hyperfine splitting provides a strict test of quantum electrodynamics (QED). Recent research revealed a discrepancy of 3.9? between the QED prediction and previous experimental results. We report on the prototype run of an improved experimental set-up and the performance of its RF system.
- Published
- 2010
- Full Text
- View/download PDF
35. Measurement of positronium hyperfine splitting with quantum oscillation
- Author
-
T. Kobayashi, Y. Sasaki, Shoji Asai, Toshio Namba, A. Ishida, A. Miyazaki, Haruo Saito, Akira Yamamoto, Kazuhiro Tanaka, Taikan Suehara, and M Ikeno
- Subjects
Nuclear and High Energy Physics ,History ,Atomic Physics (physics.atom-ph) ,Measure (physics) ,FOS: Physical sciences ,Physics - Atomic Physics ,High Energy Physics - Experiment ,Education ,Positronium ,High Energy Physics - Experiment (hep-ex) ,Quantum state ,Upper hybrid oscillation ,Quantum system ,Hyperfine structure ,Eigenvalues and eigenvectors ,Physics ,Condensed Matter - Materials Science ,Quantum Physics ,Condensed matter physics ,Oscillation ,Materials Science (cond-mat.mtrl-sci) ,Quantum oscillations ,Observable ,Magnetic field ,Computer Science Applications ,High Energy Physics::Experiment ,Atomic physics ,Quantum Physics (quant-ph) - Abstract
Interference between different energy eigenstates in a quantum system results in an oscillation with a frequency which is proportional to the difference in energy between the states. Such an oscillation is observable in polarized positronium when it is placed in a magnetic field. In order to measure the hyperfine splitting of positronium, we perform the precise measurement of this oscillation using a high quality superconducting magnet and fast photon-detectors. A result of $203.324 \pm 0.039\rm{~(stat.)} \pm 0.015\rm{(~sys.)}$~GHz is obtained which is consistent with both theoretical calculations and previous precise measurements., Comment: 4 figures accepted by Phys. Lett. B
- Published
- 2010
- Full Text
- View/download PDF
36. Precise measurement of HFS of positronium using Zeeman effect
- Author
-
Y. Sasaki, Shoji Asai, Akira Yamamoto, T. Kobayashi, M. Yoshida, Toshitaka Idehara, Toshio Namba, Svilen Sabchevski, Kazuhiro Tanaka, Isamu Ogawa, G. Akimoto, A. Miyazaki, A. Ishida, K. Kato, Haruo Saito, Y. Urushizaki, and Taikan Suehara
- Subjects
Physics ,Systematic error ,History ,Zeeman effect ,Physics beyond the Standard Model ,Measure (physics) ,Computer Science Applications ,Education ,Positronium ,symbols.namesake ,Quantum mechanics ,Quantum electrodynamics ,symbols ,High order ,Ground state ,Hyperfine structure - Abstract
The ground state hyperfine splitting of positronium, ΔHFS, is sensitive to high order corrections of QED. A new calculation up to O(α3) has revealed a 3.9 σ discrepancy between the QED prediction and the experimental results. This discrepancy might either be due to systematic problems in the previous experiments or to contributions beyond the Standard Model. We propose an experiment to measure ΔHFS employing new methods designed to remedy the systematic errors which may have affected the previous experiments. Our experiment will provide an independent check of the discrepancy. The measurement is in progress and a result of ΔHFS = 203.385 ± 0.011 GHz (58ppm) has been obtained from the prototype run. A measurement with a precision of O(ppm) is expected within a few years.
- Published
- 2010
- Full Text
- View/download PDF
37. Precise measurement of HFS of positronium
- Author
-
Kenichi Tanaka, Akira Yamamoto, M. Yoshida, A. Ishida, Toshio Namba, S. Kobayashi, Toshitaka Idehara, K. Kato, T. Kobayashi, Isamu Ogawa, Taikan Suehara, Ginga Akimoto, Shoji Asai, and Haruo Saito
- Subjects
Physics ,Systematic error ,History ,Particle physics ,Physics - Instrumentation and Detectors ,Physics beyond the Standard Model ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Measure (mathematics) ,High Energy Physics - Experiment ,Computer Science Applications ,Education ,Positronium ,High Energy Physics - Experiment (hep-ex) ,Physics::Atomic Physics ,High order ,Ground state ,Hyperfine structure - Abstract
The ground state hyperfine splitting in positronium, $\Delta _{\mathrm{HFS}}$, is sensitive to high order corrections of QED. A new calculation up to $O(\alpha ^3)$ has revealed a $3.9 \sigma$ discrepancy between the QED prediction and the experimental results. This discrepancy might either be due to systematic problems in the previous experiments or to contributions beyond the Standard Model. We propose an experiment to measure $\Delta_{\mathrm{HFS}}$ employing new methods designed to remedy the systematic errors which may have affected the previous experiments. Our experiment will provide an independent check of the discrepancy. The measurement is in progress and a preliminary result of $\Delta_{\mathrm{HFS}} = 203.399 \pm 0.029 \mathrm{GHz} (143 \mathrm{ppm})$ has been obtained. A measurement with a precision of O(1) ppm is expected within a few years., Comment: 5 pages, 6 figures, contributed to POSMOL 2009, will be published in J. Phys.: Conf. Series
- Published
- 2010
- Full Text
- View/download PDF
38. Probing the energy structure of positronium with a 203 GHz Fabry-Perot Cavity
- Author
-
Taikan Suehara, A. Miyazaki, Toshio Namba, Shoji Asai, Toshitaka Idehara, Haruo Saito, Isamu Ogawa, Svilen Sabchevski, M. Yoshida, A. Ishida, Y. Urushizaki, S. Kobayashi, and T. Kobayashi
- Subjects
Physics ,History ,Zeeman effect ,Atomic Physics (physics.atom-ph) ,Oscillation ,FOS: Physical sciences ,Virtual particle ,Magnetostatics ,High Energy Physics - Experiment ,Physics - Atomic Physics ,Computer Science Applications ,Education ,law.invention ,Positronium ,High Energy Physics - Experiment (hep-ex) ,symbols.namesake ,law ,Gyrotron ,Bound state ,symbols ,Physics::Atomic Physics ,Atomic physics ,Hyperfine structure ,Physics - Optics ,Optics (physics.optics) - Abstract
Positronium is an ideal system for the research of the bound state QED. The hyperfine splitting of positronium (Ps-HFS: about 203 GHz) is sensitive to new physics beyond the Standard Model via a vacuum oscillation between an ortho-Ps and a virtual photon. Previous experimental results of the Ps-HFS show 3.9 sigma(15 ppm) discrepancy from the QED calculation. All previous experiments used an indirect method with static magnetic field to cause Zeeman splitting (a few GHz) between triplet states of ortho-Ps, from which the HFS value was derived. One possible systematic error source of the indirect method is the static magnetic field. We are developing a new direct measurement system of the Ps-HFS without static magnetic field. In this measurement we use a gyrotron, a novel sub-THz light source, with a high-Finesse Fabry-Perot cavity to obtain enough radiation power at 203 GHz. The present status of the optimization studies and current design of the experiment are described., Comment: 6 pages, 6 figures, Proceedings of POSMOL 2009
- Published
- 2010
- Full Text
- View/download PDF
39. Improved Jet Clustering Algorithm with Vertex Information for Multi-bottom Final States
- Author
-
Taikan Suehara, Satoru Yamashita, and Tomohiko Tanabe
- Subjects
Physics ,Quark ,Particle physics ,Physics::Instrumentation and Detectors ,Collider physics ,Higgs self coupling ,High Energy Physics::Phenomenology ,Detector ,FOS: Physical sciences ,Probability and statistics ,Vertex finder ,Physics and Astronomy(all) ,High Energy Physics - Experiment ,Vertex (geometry) ,High Energy Physics - Experiment (hep-ex) ,Physics - Data Analysis, Statistics and Probability ,Higgs boson ,High Energy Physics::Experiment ,Cluster analysis ,Data Analysis, Statistics and Probability (physics.data-an) ,Jet clustering - Abstract
In collider physics at the TeV scale, there are many important processes which involve six or more jets. The sensitivity of the physics analysis depends critically on the performance of the jet clustering algorithm. We present a full detector simulation study for the ILC of our new algorithm which makes use of secondary vertices which improves the reconstruction of b jets. This algorithm will have many useful applications, such as in measurements involving a light Higgs which decays predominantly into two b quarks. We focus on the measurement of the Higgs self-coupling, which has so far proven to be challenging but is one of the most important measurements at the ILC., 7 pages, 3 figures, Proc. TIPP 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.