1. Assessing a statistical and a set-based approach for remaining useful life prediction
- Author
-
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control, Khoury, Boutrous, Thuillier, Julien, Jha, Mayank Shekhar, Puig Cayuela, Vicenç, Theilliol, Didier, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control, Khoury, Boutrous, Thuillier, Julien, Jha, Mayank Shekhar, Puig Cayuela, Vicenç, and Theilliol, Didier
- Abstract
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works, In this paper, an assessment of two methods of uncertainty quantification in prognostics is undertaken. The two methods, the Inverse First Order Reliability Method (IFORM) and set-based reachability analysis for prognostics are considered. The IFORM approach permits the generation of confidence bounds that allows for the calculation of RUL values corresponding to the specified user-defined probability levels. On the other hand, uncertainty quantification can be achieved by means of set-based reachability analysis. A Zono-topic Kalman filter (ZKF) is proposed to take into account a damage-model such that at each propagation time, with the estimated state (degradation) and its uncertainty, a propagation of zonotopic sets can be produced. Coming from two different schools of thought, the statistical and set-based theory, both schemes are explored and tested on a case study in simulation., This work has been co-financed by the Spanish Research Agency (AEI) through the project SaCoAV (ref. MINECO PID2020-114244RB-I00) and MASHED (TED2021-129927B-I00)., Peer Reviewed, Postprint (author's final draft)
- Published
- 2023