1. Photovoltaic Performance of Dye-Sensitized Solar Cells with a Solid-State Redox Mediator Based on an Ionic Liquid and Hole-Transporting Triphenylamine Compound.
- Author
-
Kong, Minseon, Oh, Da Hyeon, Choi, Baekseo, and Han, Yoon Soo
- Subjects
- *
DYE-sensitized solar cells , *TRIPHENYLAMINE , *PHOTOVOLTAIC power systems , *IONIC liquids , *OXIDATION-reduction reaction , *SHORT-circuit currents - Abstract
An ionic liquid, 1-methyl-3-propylimidazolium iodide (MPII), was solidified with an organic hole-transporting material, 4,4′,4″-tris[(3-methylphenyl)phenylamino]triphenylamine (m-MTDATA), and the resulting solid-state redox mediator (RM) (m-MTDATA-solidified MPII) was employed in solar devices to realize solid-state dye-sensitized solar cells (sDSSCs). Solar devices with only MPII or m-MTDATA as an RM showed almost 0 mA/cm2 of short-circuit current (Jsc) and thus 0% power conversion efficiency (PCE). However, an sDSSC with the m-MTDATA-solidified MPII exhibited 4.61 mA/cm2 of Jsc and 1.80% PCE. It was found that the increased Jsc and PCE were due to the formation of I3−, which resulted from a reaction between the iodie (I−) of MPII and m-MTDATA cation. Further enhancement in both Jsc (9.43 mA/cm2) and PCE (4.20%) was observed in an sDSSC with 4-tert butylpyridine (TBP) as well as with m-MTDATA-solidified MPII. We attributed the significant increase (about 230%) in PCE to the lowered diffusion resistance of I−/I3− ions in the solid-state RM composed of the m-MTDATA-solidified MPII and TBP, arising from TBP's role as a plasticizer. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF