1. Modeling of Modular Multilevel Converters for Stability Analysis
- Author
-
Bessegato, Luca and Bessegato, Luca
- Abstract
Modular multilevel converters (MMCs) have recently become the state-of-the-art solution for various grid-connected applications, such as high-voltage direct current (HVDC) systems and flexible alternating current transmission systems (FACTS). Modularity, scalability, low power losses, and low harmonic distortion are the outstanding properties that make MMCs a key technology for a sustainable future. The main objective of this thesis is the modeling of grid-connected MMCs for stability analysis. The stability of the interconnected system, formed by the converter and the ac grid, can be assessed by analyzing the converter ac-side admittance in relation to the grid impedance. Therefore, a method for the calculation of the ac-side admittance of MMCs is developed. This method overcomes the nonlinearities of the converter dynamics and it can be easily adapted to different applications. Moreover, the effects of different control schemes on the MMC ac-side admittance are studied, showing how the converter admittance can be reshaped. This is a useful tool for system design, because it shows how control parameters can be selected to avoid undesired grid-converter interactions. This thesis also studies ac/ac MMCs for railway power supplies, which are used in countries with a low-frequency railway grid, such as Germany (16.7 Hz) and Sweden (16 2/3 Hz). A hierarchical control scheme for these converters is devised and evaluated, considering the requirements and the operating conditions specific to this application. Furthermore, admittance models of the ac/ac MMC are developed, showing how the suggested hierarchical control scheme affects the three-phase and the single-phase side admittances of the converter. For computing the insertion indices, an open-loop scheme with sum capacitor voltage estimation is applied to the ac/ac MMC. Lyapunov stability theory is used to prove the asymptotic stability of the converter operated with the proposed control method. This specific open, Modulära multinivåomvandlare (MMC) har under senare år utvecklats till den mest relevanta lösningen för olika tillämpningar där kraftelektroniska omriktare är anslutna till växelströmsnät, såsom system för högspänd likströmsöverföring (HVDC) och flexibla system för överföring av växelström (FACTS). Den modulära uppbyggnaden, skalbarhet, låga förluster och låga övertoner är egenskaperna som gör MMC omriktare till en central komponent för framtida hållbara elenergisystem. Huvudsyftet med denna avhandling är modellering av nätanslutna omvandlare av typ MMC för stabilitetsanalys. Stabiliteten för systemet omvandlare och nät, kan bedömas genom att analysera omvandlarens växelströmssidiga admittans i förhållande till nätimpedansen. En metod har därför utvecklats för att beräkna den modulära multinivåomvandlarens admittans. Metoden tar hänsyn till olinjäriteter i omvandlarens dynamik och kan enkelt anpassas till olika tillämpningar. Därutöver studeras effekterna av hur olika reglersystem påverkar omvandlarens admittans och hur omvandlarens admittans kan omformas. Denna möjlighet är användbar vid utformning av en systemlösning, eftersom reglerparametrarna kan väljas för att undvika oönskade störningar mellan nät och omriktare. I avhandlingen undersöks även modulära ac/ac-omvandlare för järnvägsbanmatning. Dessa används i länder med lågfrekvensbanmatning så som Tysk-land med 16,7 Hz och Sverige med 16 2/3 Hz. Ett hierarkiskt reglersystem har utvecklats och utvärderats med avseende på järnvägstillämpningens specifika krav och dess driftsförhållanden. Admittansmodeller har utvecklats, för dessa modulära ac/ac-omvandlare, som visar hur det föreslagna hierarkiska reglersystemet påverkar omvandlarens admittans på både trefas- och enfassidan. För att beräkna ac/ac-omvandlarens inkopplingsförhållande appliceras en öppen styrning som estimerar summan av submodulernas kondensatorspänningar. Lyapunovs stabilitetsteori har använts för att bevisa den asymptotiska stabiliteten hos om, QC 20190405
- Published
- 2019