1. Methods of non-smooth optimization in portfolio theory
- Author
-
Lehman Pavasović, Katarina and Vrdoljak, Marko
- Subjects
teorija portfelja ,discrete gradient method ,PRIRODNE ZNANOSTI. Matematika ,optimizacija portfelja ,portfolio theory ,mjera CVaR ,NATURAL SCIENCES. Mathematics ,CVaR ,portfolio optimization ,diskretna gradijentna metoda - Abstract
Cilj ovog rada bio je prikazati primjenu neglatke optimizacije u teoriji portfelja. Najprije smo dali pregled teorije koja je vezana uz povrate portfelja, njihove distribucije, učinkovitost i rizičnost. Nakon toga smo prikazali najpoznatije mjere rizika koje se koriste u optimizaciji portfelja te sugerirali korištenje mjere CVaR jer je koherentna i može se koristiti u situacijama kada gubici nisu normalno distribuirani. U drugome poglavlju prikazali smo model optimizacije portfelja u kontekstu mjere rizika CVaR. Budući da izraz za CVaR sadrži funkciju \(x^+=\max (0,x) \), to je problem neglatke optimizacije. Rješavanju problema moguće je pristupiti na dva načina: transformirati zadaću u problem linearnog programiranja ili direktno riješiti zadaću pogodnom metodom neglatke optimizacije. U radu smo predstavili oba načina, uz poseban naglasak na direktnu primjenu diskretne gradijentne metode. Takav pristup daje učinkovitije rješenje, pogotovo u situacijama kada želimo pronaći optimalne portfelje, a promatramo veliki broj scenarija. The aim of this thesis was to show application of non-smooth optimization in portfolio theory. First we gave an overview on theory which is related to portfolio returns, distribution of returns, efficiency and riskiness. After that we introduced the most popular risk measures in portfolio optimization and suggested use of CVaR because it is coherent and it can be used even if distribution of returns is not normal. In the second chapter we described portfolio optimization model in the context of CVaR measure. Since expression for CVaR contains a function \(x^+=\max (0,x) \), it is a non-smooth optimization problem. To solve this problem, one could use two ways: transform the problem into a linear programming model or directly solve the problem using an appropriate non-smooth method. In this thesis we introduced both ways, with special emphasis on direct application of discrete gradient method. Such approach gives a more efficient solution, especially when we want to find optimal solution for portfolios with large number of scenarios.
- Published
- 2022