5 results on '"van Kempen, T. A. T. G."'
Search Results
2. Feed intake patterns nor growth rates of pigs are affected by dietary resistant starch, despite marked differences in digestion.
- Author
-
van Erp, R. J. J., de Vries, S., van Kempen, T. A. T. G., Den Hartog, L. A., and Gerrits, W. J. J.
- Abstract
Current feed evaluation systems often assume that fermented starch (i.e. resistant starch (RS)) yields less energy than digested starch. However, growth rates of pigs fed low and high RS diets are often the same when feed is available ad libitum. This may be explained by its effect on digestive processes changing feeding behavior, and consequently energy utilization. This study aims to investigate the effect of RS on nutrient digestion and digesta passage rate in pigs, in combination with its effect on feeding behavior and growth performance under ad libitum conditions. In experiment 1, 20 male pigs (40 ± 2.82 kg) were fed diets containing either 50% waxy maize starch (low in RS (LRS)) or high-amylose maize starch (high in RS (HRS)), and soluble and insoluble indigestible markers. After 14 days of adaptation to the diets, pigs were fed hourly to reach steady state (6 h), dissected, and digesta were collected from eight segments. From the collected samples, nutrient digestion and passage rate of the solid and liquid digesta fraction were determined. In experiment 2, 288 pigs (80 ± 0.48 kg; sex ratio per pen 1 : 1; boar : gilt) were housed in groups of 6. Pigs were ad libitum-fed one of the experimental diets, and slaughtered at approximately 115 kg. Feed intake, growth and carcass parameters were measured. Ileal starch digestibility was greater for LRS-fed than for HRS-fed pigs (98.0% v. 74.0%; P < 0.001), where the additional undigested starch in HRS-fed pigs was fermented in the large intestine. No effects of RS on digesta passage rate of the solid or liquid digesta fraction and on feeding behavior were observed. Growth rate and feed intake did not differ between diets, whereas feed efficiency of HRS-fed pigs was 1%-unit higher than that of LRS-fed pigs (P = 0.041). The efficiency of feed used for carcass gain did not differ between diets indicating that the difference in feed efficiency was determined by the non-carcass fraction. Despite a 30% greater RS intake (of total starch) with HRS than with LRS, carcass gain and feed efficiency used for carcass gain were unaffected. RS did not affect digesta passage rate nor feeding behavior suggesting that the difference in energy intake between fermented and digested starch is compensated for post-absorptively. Our results indicate that the net energy value of fermented starch currently used in pig feed evaluation systems is underestimated and should be reconsidered. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
3. Chenodeoxycholic acid reduces intestinal permeability in newly weaned piglets
- Author
-
van der Meer, Y., Gerrits, W. J. J., van den Bosch, M., Holst, J. J., Moreto, M., Buurman, W. A., Kulik, W., van Kempen, T. A. T. G., Surgery, RS: NUTRIM School of Nutrition and Translational Research in Metabolism, AGEM - Amsterdam Gastroenterology Endocrinology Metabolism, and Laboratory Genetic Metabolic Diseases
- Subjects
everted gut sac technique ,Animal Nutrition ,intestinal permeability ,growth ,WIAS ,piglet ,chenodeoxycholic acid ,gut health ,Diervoeding - Abstract
Piglets are highly susceptible to gut health-related problems. Intravenously administered chenodeoxycholic acid (CDCA) affects gut health mediated through glucagon-like peptide 2 (GLP-2). To test whether CDCA is a suitable feed additive for improving gut health, a trial was performed with newly weaned (21 d) piglets offered a diet with or without 60 mg CDCA/kg feed (n = 24/treatment). Upon weaning, piglets were fasted for 16 h and then intragastrically dosed with 20 g test feed in 40 g water. Subsequently, a jugular blood sample was taken on 45, 90, 135, or 180 min for analysis of GLP-2, peptide YY (PYY), and glucose. Afterwards, piglets were offered the experimental diets ad libitum. On days 3.5, 7.5, and 10.5 after weaning, serum responses to an intragastric dose of lactulose and Co-EDTA were tested at 2 h after dosing in 8 piglets per treatment. Immediately thereafter, piglets were euthanized, intestines were harvested, and permeability was measured ex vivo using the everted gut sac technique with 4 kDa fluorescein isothiocyanato (FITC)-dextran as marker at 25, 50, and 75% of the length of the small intestine. Dietary CDCA did not affect (P > 0.05) ADFI, ADG, G: F, blood glucose, and plasma GLP-2 and PYY. Serum cobalt and lactulose at day 10.5 tended to be lower in CDCA pigs compared with control pigs. Serum cobalt and lactulose concentrations were positively correlated (r = 0.67; P
- Published
- 2012
4. Chenodeoxycholic acid reduces intestinal permeability in newly weaned piglets
- Author
-
van der Meer, Y, Gerrits, W J J, van den Bosch, M, Holst, Jens Juul, Moreto, M, Buurman, W A, Kulik, W, van Kempen, T A T G, van der Meer, Y, Gerrits, W J J, van den Bosch, M, Holst, Jens Juul, Moreto, M, Buurman, W A, Kulik, W, and van Kempen, T A T G
- Abstract
Piglets are highly susceptible to gut health-related problems. Intravenously administered chenodeoxycholic acid (CDCA) affects gut health mediated through glucagon-like peptide 2 (GLP-2). To test whether CDCA is a suitable feed additive for improving gut health, a trial was performed with newly weaned (21 d) piglets offered a diet with or without 60 mg CDCA/kg feed (n = 24/treatment). Upon weaning, piglets were fasted for 16 h and then intragastrically dosed with 20 g test feed in 40 g water. Subsequently, a jugular blood sample was taken on 45, 90, 135, or 180 min for analysis of GLP-2, peptide YY (PYY), and glucose. Afterwards, piglets were offered the experimental diets ad libitum. On days 3.5, 7.5, and 10.5 after weaning, serum responses to an intragastric dose of lactulose and Co-EDTA were tested at 2 h after dosing in 8 piglets per treatment. Immediately thereafter, piglets were euthanized, intestines were harvested, and permeability was measured ex vivo using the everted gut sac technique with 4 kDa fluorescein isothiocyanato (FITC)-dextran as marker at 25, 50, and 75% of the length of the small intestine. Dietary CDCA did not affect (P > 0.05) ADFI, ADG, G:F, blood glucose, and plasma GLP-2 and PYY. Serum cobalt and lactulose at day 10.5 tended to be lower in CDCA pigs compared with control pigs. Serum cobalt and lactulose concentrations were positively correlated (r = 0.67; P <0.01). In conclusion, CDCA tended to reduce intestinal permeability at 10.5 d after weaning when fed to newly weaned piglets, implying that CDCA deserves further study as a means for improving intestinal health. The positive correlation found between Co-EDTA and lactulose indicates that both marker molecules measure similar change in permeability.
- Published
- 2012
5. Identifying the limitations for growth in low performing piglets from birth until 10 weeks of age.
- Author
-
Paredes, S. P., Jansman, A. J. M., Verstegen, M. W. A., den Hartog, L. A., van Hees, H. M. J., Bolhuis, J. E., van Kempen, T. A. T. G., and Gerrits, W. J. J.
- Abstract
The evolution of hyper-prolific pig breeds has led to a higher within-litter variation in birth weight and in BW gain during the nursery phase. Based on an algorithm developed in previous research, two populations from a pool of 368 clinically healthy piglets at 6 weeks of age were selected: a low (LP) and a high (HP) performing population and their development was monitored until the end of the nursery phase (10 weeks of age). To understand the cause of the variation in growth between these populations we characterized the LP and HP piglets in terms of body morphology, behaviour, voluntary feed intake, BW gain, and apparent total tract and ileal nutrient digestibility. Piglets were housed individually and were fed a highly digestible diet. At selection, 6 weeks of age, the BW of LP and HP piglets were 6.8±0.1 and 12.2±0.1 kg, respectively. Compared with the LP piglets the HP piglets grew faster (203 g/day), ate more (275 g/day) from 6 to 10 weeks of age and were heavier at 10 weeks (30.0 v. 18.8 kg, all P<0.01). Yet, the differences in average daily gain and average daily feed intake disappeared when compared per kg BW0.75. Assuming similar maintenance requirements per kg BW0.75 the efficiency of feed utilization above maintenance was 0.1 g/g lower for the LP piglets (P=0.09).The gain : feed ratio was similar for both groups. LP piglets tended to take more time to touch a novel object (P=0.10), and spent more time eating (P<0.05). At 10 weeks, LP piglets had a higher body length and head circumference relative to BW (P<0.01). Relative to BW, LP had a 21% higher small intestine weight; 36% longer length, and relative to average FI, the small intestinal weight was 4 g/kg higher (both P=<0.01). Apparent total tract and ileal dry matter, N and gross energy digestibility were similar between groups (P>0.10). We concluded that the low performance of the LP piglets was due to their inability to engage compensatory gain or compensatory feed intake as efficiency of nutrient utilization and feed intake per kg BW0.75 was unaffected. LP piglets tend to be more fearful towards novel objects. The morphological comparisons, increased body length and head circumference relative to BW imply that LP piglets have an increased priority for skeletal growth. [ABSTRACT FROM PUBLISHER]
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.