1. Ca2+ dysregulation in cardiac stromal cells sustains fibro-adipose remodeling in Arrhythmogenic Cardiomyopathy and can be modulated by flecainide
- Author
-
Angela S. Maione, Pawan Faris, Lara Iengo, Valentina Catto, Luca Bisonni, Francesco Lodola, Sharon Negri, Michela Casella, Anna Guarino, Gianluca Polvani, Marina Cerrone, Claudio Tondo, Giulio Pompilio, Elena Sommariva, and Francesco Moccia
- Subjects
Arrhythmogenic cardiomyopathy ,Cardiac mesenchymal stromal cells ,Calcium signalling ,CaMKII ,Store-operated Ca2+ entry ,Flecainide ,Medicine - Abstract
Abstract Background Cardiac mesenchymal stromal cells (C-MSC) were recently shown to differentiate into adipocytes and myofibroblasts to promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM). A calcium (Ca2+) signaling dysfunction, mainly demonstrated in mouse models, is recognized as a mechanism impacting arrhythmic risk in ACM cardiomyocytes. Whether similar mechanisms influence ACM C-MSC fate is still unknown. Thus, we aim to ascertain whether intracellular Ca2+ oscillations and the Ca2+ toolkit are altered in human C-MSC obtained from ACM patients, and to assess their link with C-MSC-specific ACM phenotypes. Methods and results ACM C-MSC show enhanced spontaneous Ca2+ oscillations and concomitant increased Ca2+/Calmodulin dependent kinase II (CaMKII) activation compared to control cells. This is manly linked to a constitutive activation of Store-Operated Ca2+ Entry (SOCE), which leads to enhanced Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate receptors. By targeting the Ca2+ handling machinery or CaMKII activity, we demonstrated a causative link between Ca2+ oscillations and fibro-adipogenic differentiation of ACM C-MSC. Genetic silencing of the desmosomal gene PKP2 mimics the remodelling of the Ca2+ signalling machinery occurring in ACM C-MSC. The anti-arrhythmic drug flecainide inhibits intracellular Ca2+ oscillations and fibro-adipogenic differentiation by selectively targeting SOCE. Conclusions Altogether, our results extend the knowledge of Ca2+ dysregulation in ACM to the stromal compartment, as an etiologic mechanism of C-MSC-related ACM phenotypes. A new mode of action of flecainide on a novel mechanistic target is unveiled against the fibro-adipose accumulation in ACM.
- Published
- 2022
- Full Text
- View/download PDF