7 results on '"Asela Wijeratne"'
Search Results
2. Gene content evolution in the arthropods
- Author
-
Gregg W. C. Thomas, Elias Dohmen, Daniel S. T. Hughes, Shwetha C. Murali, Monica Poelchau, Karl Glastad, Clare A. Anstead, Nadia A. Ayoub, Phillip Batterham, Michelle Bellair, Greta J. Binford, Hsu Chao, Yolanda H. Chen, Christopher Childers, Huyen Dinh, Harsha Vardhan Doddapaneni, Jian J. Duan, Shannon Dugan, Lauren A. Esposito, Markus Friedrich, Jessica Garb, Robin B. Gasser, Michael A. D. Goodisman, Dawn E. Gundersen-Rindal, Yi Han, Alfred M. Handler, Masatsugu Hatakeyama, Lars Hering, Wayne B. Hunter, Panagiotis Ioannidis, Joy C. Jayaseelan, Divya Kalra, Abderrahman Khila, Pasi K. Korhonen, Carol Eunmi Lee, Sandra L. Lee, Yiyuan Li, Amelia R. I. Lindsey, Georg Mayer, Alistair P. McGregor, Duane D. McKenna, Bernhard Misof, Mala Munidasa, Monica Munoz-Torres, Donna M. Muzny, Oliver Niehuis, Nkechinyere Osuji-Lacy, Subba R. Palli, Kristen A. Panfilio, Matthias Pechmann, Trent Perry, Ralph S. Peters, Helen C. Poynton, Nikola-Michael Prpic, Jiaxin Qu, Dorith Rotenberg, Coby Schal, Sean D. Schoville, Erin D. Scully, Evette Skinner, Daniel B. Sloan, Richard Stouthamer, Michael R. Strand, Nikolaus U. Szucsich, Asela Wijeratne, Neil D. Young, Eduardo E. Zattara, Joshua B. Benoit, Evgeny M. Zdobnov, Michael E. Pfrender, Kevin J. Hackett, John H. Werren, Kim C. Worley, Richard A. Gibbs, Ariel D. Chipman, Robert M. Waterhouse, Erich Bornberg-Bauer, Matthew W. Hahn, and Stephen Richards
- Subjects
Arthropods ,Genome assembly ,Genomics ,Protein domains ,Gene content ,Evolution ,Biology (General) ,QH301-705.5 ,Genetics ,QH426-470 - Abstract
Abstract Background Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Results Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. Conclusions These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.
- Published
- 2020
- Full Text
- View/download PDF
3. Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model
- Author
-
Anand Kumar, Anastasia N. Vlasova, Loic Deblais, Huang-Chi Huang, Asela Wijeratne, Sukumar Kandasamy, David D. Fischer, Stephanie N. Langel, Francine Chimelo Paim, Moyasar A. Alhamo, Lulu Shao, Linda J. Saif, and Gireesh Rajashekara
- Subjects
Rotavirus ,Humanized pig ,Microbiota ,Protein diet ,Malnutrition ,Diseases of the digestive system. Gastroenterology ,RC799-869 - Abstract
Abstract Background Human rotavirus (HRV) is a major cause of viral gastroenteritis in infants; particularly in developing countries where malnutrition is prevalent. Malnutrition perturbs the infant gut microbiota leading to sub-optimal functioning of the immune system and further predisposing infants to enteric infections. Therefore, we hypothesized that malnutrition exacerbates rotavirus disease severity in infants. Methods In the present study, we used a neonatal germ free (GF) piglets transplanted with a two-month-old human infant’s fecal microbiota (HIFM) on protein deficient and sufficient diets. We report the effects of malnourishment on the HRV infection and the HIFM pig microbiota in feces, intestinal and systemic tissues, using MiSeq 16S gene sequencing (V4-V5 region). Results Microbiota analysis indicated that the HIFM transplantation resulted in a microbial composition in pigs similar to that of the original infant feces. This model was then used to understand the interconnections between microbiota diversity, diet, and HRV infection. Post HRV infection, HIFM pigs on the deficient diet had lower body weights, developed more severe diarrhea and increased virus shedding compared to HIFM pigs on sufficient diet. However, HRV induced diarrhea and shedding was more pronounced in non-colonized GF pigs compared to HIFM pigs on either sufficient or deficient diet, suggesting that the microbiota alone moderated HRV infection. HRV infected pigs on sufficient diet showed increased microbiota diversity in intestinal tissues; whereas, greater diversity was observed in systemic tissues of HRV infected pigs fed with deficient diet. Conclusions These results suggest that proper nourishment improves the microbiota quality in the intestines, alleviates HRV disease and lower probability of systemic translocation of potential opportunistic pathogens/pathobionts. In conclusion, our findings further support the role for microbiota and proper nutrition in limiting enteric diseases.
- Published
- 2018
- Full Text
- View/download PDF
4. Transcriptomic dynamics in soybean near-isogenic lines differing in alleles for an aphid resistance gene, following infestation by soybean aphid biotype 2
- Author
-
Sungwoo Lee, Bryan J. Cassone, Asela Wijeratne, Tae-Hwan Jun, Andrew P. Michel, and M.A. Rouf Mian
- Subjects
Rag5 ,RNA sequencing ,Aphis glycines Matsumura ,Aphid resistance ,Near-isogenic line (NIL) ,DESeq2 ,Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background Genetic resistance of soybean [Glycine max (L.) Merr] against Aphis glycines provides effective management of this invasive pest, though the underlying molecular mechanisms are largely unknown. This study aimed to investigate genome-wide changes in gene expressions of soybean near-isogenic lines (NILs) either with the Rag5 allele for resistance or the rag5 allele for susceptibility to the aphid following infestation with soybean aphid biotype 2. Results The resistant (R)-NIL responded more rapidly to aphid infestation than the susceptible (S)-NIL, with differential expressions of 2496 genes during first 12 h of infestation (hai), compared to the aphid-free control. Although the majority of the differentially expressed genes (DEGs) in the R-NIL also responded to aphid infestation in S-NIL, overall the response time was longer and/or the magnitude of change was smaller in the S-NIL. In addition, 915 DEGs in R-NIL continued to be regulated at all time points (0, 6, 12, and 48 hai), while only 20 DEGs did so in S-NIL. Enriched gene ontology of the 2496 DEGs involved in plant defense responses including primary metabolite catalysis, oxidative stress reduction, and phytohormone-related signaling. By comparing R- vs. S-NIL, a total of 556 DEGs were identified. Of the 13 genes annotated in a 120-kb window of the Rag5 locus, two genes (Glyma.13 g190200 and Glyma.13 g190600) were differentially expressed (upregulated in S- or R-NIL), and another gene (Glyma.13 g190500) was induced up to 4-fold in the R-NIL at 6 and 12 h following aphid infestation. Conclusions This study strengthens our understanding of the defense dynamics in compatible and incompatible interactions of soybean and soybean aphid biotype 2. Several DEGs (e.g., Glyma.13 g190200, Glyma.13 g190500, and Glyma.13 g190600) near the Rag5 locus are strong candidate genes for further investigations.
- Published
- 2017
- Full Text
- View/download PDF
5. Differential Expression Profiling Reveals Stress-Induced Cell Fate Divergence in Soybean Microspores
- Author
-
Brett Hale, Callie Phipps, Naina Rao, Asela Wijeratne, and Gregory C. Phillips
- Subjects
microspore embryogenesis ,totipotency ,microgametogenesis ,cell fate ,RNA-Seq ,soybean ,Botany ,QK1-989 - Abstract
Stress-induced microspore embryogenesis is a widely employed method to achieve homozygosity in plant breeding programs. However, the molecular mechanisms that govern gametophyte de- and redifferentiation are understood poorly. In this study, RNA-Seq was used to evaluate global changes across the microspore transcriptome of soybean (Glycine max [L.] Merrill) as a consequence of pretreatment low-temperature stress. Expression analysis revealed more than 20,000 differentially expressed genes between treated and control microspore populations. Functional enrichment illustrated that many of these genes (e.g., those encoding heat shock proteins and cytochrome P450s) were upregulated to maintain cellular homeostasis through the mitigation of oxidative damage. Moreover, transcripts corresponding to saccharide metabolism, vacuolar transport, and other pollen-related developmental processes were drastically downregulated among treated microspores. Temperature stress also triggered cell wall modification and cell proliferation—characteristics that implied putative commitment to an embryonic pathway. These findings collectively demonstrate that pretreatment cold stress induces soybean microspore reprogramming through suppression of the gametophytic program while concomitantly driving sporophytic development.
- Published
- 2020
- Full Text
- View/download PDF
6. Fecal microbiome of periparturient dairy cattle and associations with the onset of Salmonella shedding.
- Author
-
Lohendy Muñoz-Vargas, Stephen O Opiyo, Rose Digianantonio, Michele L Williams, Asela Wijeratne, and Gregory Habing
- Subjects
Medicine ,Science - Abstract
Non-typhoidal Salmonella enterica is a zoonotic pathogen with critical importance in animal and public health. The persistence of Salmonella on farms affects animal productivity and health, and represents a risk for food safety. The intestinal microbiota plays a fundamental role in the colonization and invasion of this ubiquitous microorganism. To overcome the colonization resistance imparted by the gut microbiome, Salmonella uses invasion strategies and the host inflammatory response to survive, proliferate, and establish infections with diverse clinical manifestations. Cattle serve as reservoirs of Salmonella, and periparturient cows have high prevalence of Salmonella shedding; however, little is known about the association between the gut microbiome and the onset of Salmonella shedding during the periparturient period. Thus, the objective of this study was to assess the association between changes in bacterial communities and the onset of Salmonella shedding in cattle approaching parturition. In a prospective cohort study, fecal samples from 98 dairy cows originating from four different farms were collected at four time points relative to calving (-3 wks, -1 wk, +1 wk, +3 wks). All 392 samples were cultured for Salmonella. Sequencing of the V4 region of the 16S rRNA gene using the Illumina platform was completed to evaluate the fecal microbiome in a selected sample subset. Analyses of microbial composition, diversity, and structure were performed according to time points, farm, and Salmonella onset status. Individual cow fecal microbiomes, predominated by Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria phyla, significantly changed before and after parturition. Microbial communities from different farms were distinguishable based on multivariate analysis. Although there were significant differences in some bacterial taxa between Salmonella positive and negative samples, our results did not identify differences in the fecal microbial diversity or structure for cows with and without the onset of Salmonella shedding. These data suggest that determinants other than the significant changes in the fecal microbiome influence the periparturient onset of Salmonella shedding in dairy cattle.
- Published
- 2018
- Full Text
- View/download PDF
7. Peer review of 'Draft genomes of two blister beetles (genus: Hycleus) harvested for the potent blistering agent cantharidin'
- Author
-
Asela Wijeratne
- Abstract
This is the open peer reviewers comments and recommendations regarding the submitted GigaScience article and/or dataset.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.