Clairbaux, Manon, Mathewson, Paul, Porter, Warren, Fort, Jérôme, Strøm, Hallvard, Moe, Børge, Fauchald, Per, Descamps, Sebastien, Helgason, Hálfdán H., Bråthen, Vegard S., Merkel, Benjamin, Anker-Nilssen, Tycho, Bringsvor, Ingar S., Chastel, Olivier, Christensen-Dalsgaard, Signe, Danielsen, Jóhannis, Daunt, Francis, Dehnhard, Nina, Erikstad, Kjell Einar, and Ezhov, Alexey
Each winter, the North Atlantic Ocean is the stage for numerous cyclones, the most severe ones leading to seabird mass-mortality events called "winter wrecks." 1–3 During these, thousands of emaciated seabird carcasses are washed ashore along European and North American coasts. Winter cyclones can therefore shape seabird population dynamics 4,5 by affecting survival rates as well as the body condition of surviving individuals and thus their future reproduction. However, most often the geographic origins of impacted seabirds and the causes of their deaths remain unclear. 6 We performed the first ocean-basin scale assessment of cyclone exposure in a seabird community by coupling winter tracking data for ∼1,500 individuals of five key North Atlantic seabird species (Alle alle , Fratercula arctica , Uria aalge , Uria lomvia , and Rissa tridactyla) and cyclone locations. We then explored the energetic consequences of different cyclonic conditions using a mechanistic bioenergetics model 7 and tested the hypothesis that cyclones dramatically increase seabird energy requirements. We demonstrated that cyclones of high intensity impacted birds from all studied species and breeding colonies during winter but especially those aggregating in the Labrador Sea, the Davis Strait, the surroundings of Iceland, and the Barents Sea. Our broad-scale analyses suggested that cyclonic conditions do not increase seabird energy requirements, implying that they die because of the unavailability of their prey and/or their inability to feed during cyclones. Our study provides essential information on seabird cyclone exposure in a context of marked cyclone regime changes due to global warming. 8 • Five key North Atlantic seabird species are exposed to winter cyclones • High exposure is in the Labrador Sea, the Davis Strait, the Barents Sea, and off Iceland • Seabird energy requirements do not seem to increase under cyclonic conditions • Seabird mortality during high-intensity cyclones is likely caused by starvation Using tracking data for >1,500 migration seabirds from five key North Atlantic species, cyclone locations, and bioenergetics modeling, Clairbaux et al. demonstrate that high-intensity winter cyclones impact birds from all studied species and breeding colonies and suggest that cyclonic conditions starve seabirds by preventing them from feeding. [ABSTRACT FROM AUTHOR]