6 results on '"Chunyang XIA"'
Search Results
2. The feasibility of short-segment Schanz screw implanted in an oblique downward direction for the treatment of lumbar 1 burst fracture: a finite element analysis
- Author
-
Jifeng Liu, Sheng Yang, Fei Zhou, Jianmin Lu, Chunyang Xia, Huanhuan Wang, and Chao Chen
- Subjects
Lumbar burst fracture ,Schanz screw ,Oblique downward direction ,Biomechanics ,Orthopedic surgery ,RD701-811 ,Diseases of the musculoskeletal system ,RC925-935 - Abstract
Abstract Background To evaluate the biomechanical properties of short-segment Schanz screw implanted in an oblique downward direction for the treatment of lumbar 1 burst fracture using a finite element analysis. Methods The Universal Spine System (USS) fixation model for adjacent upper and lower vertebrae (T12 and L2) of lumbar 1 vertebra burst fracture was established. During flexion/extension, lateral bending, and rotation, the screw stress and the displacement of bone defect area of the injured vertebrae were evaluated when the downward inserted angle between the long axis of the screws and superior endplate of the adjacent vertebrae was set to 0° (group A), 5° (group B), 10° (group C), and 15°(group D). There were 6 models in each group. Results There were no significant differences in the maximum screw stress among all the groups during flexion/extension, lateral bending, and rotation (P > 0.05). There were no significant differences in the maximum displacement of the bone defect area of the injured vertebrae among all the groups during flexion/extension, lateral bending, and rotation (P > 0.05). Conclusion Short-segment Schanz screw implanted in an oblique downward direction with different angles (0°/parellel, 5°, 10°, and 15°) did not change the maximum stress of the screws, and there was a lower risk of screw breakage in all groups during flexion/extension, lateral bending, and rotation. In addition, the displacement of the injured vertebra defect area had no significant changes with the change of angles.
- Published
- 2020
- Full Text
- View/download PDF
3. Numerical Test and Strength Prediction of Concrete Failure Process Based on RVM Algorithm
- Author
-
Chunyang Xia, Xuedong Guo, and Wenting Dai
- Subjects
Abaqus ,relevance vector machine ,concrete ,strength ,prediction ,Building construction ,TH1-9745 - Abstract
Recycled aggregate concrete (RAC) based on the machine learning (ML) method predicts the nonlinear uncertainty relationship between various mixing ratios and strength. Uniaxial compressive strength is one of the important indices to evaluate its performance. Machine learning is one of the essential methods for solving this nonlinear uncertainty relationship. To realize the selection of concrete raw materials and the learning and application of other influencing factors and provide guidance for engineering construction and application, this paper establishes a database of concrete uniaxial compressive strength based on Abaqus simulation software. The simulation results are highly consistent with the actual values. Based on the simulation database, with different water-cement ratios, different curing days, and recycled aggregate replacement rates as the input data set, the uniaxial compressive strength of concrete is the output data set. The data set is divided into a training set and a test set. A prediction model of the uniaxial compressive strength of concrete based on a relevance vector machine (RVM) algorithm is established. The results show that the maximum error between the simulated and experimental uniaxial compressive strength values is only 0.2 MPa. The correlation coefficient R between the predicted and simulated values of the concrete uniaxial compressive strength prediction model based on the RVM algorithm is 0.975. The model can effectively predict the compressive strength of RAC to meet the engineering requirements.
- Published
- 2022
- Full Text
- View/download PDF
4. YTH domain family protein 3 accelerates non-small cell lung cancer immune evasion through targeting CD8+ T lymphocytes
- Author
-
Yisheng Luo, Chao Zeng, Zezhong Ouyang, Wenbin Zhu, Jiazhi Wang, Zhiyin Chen, Chunyang Xiao, Guodong Wu, Liang Li, Youhui Qian, Xin Chen, Yuchen Liu, and Hao Wu
- Subjects
Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 ,Cytology ,QH573-671 - Abstract
Abstract Immune evasion is one of the critical hallmarks of malignant tumors, especially non-small cell lung cancer (NSCLC). Emerging findings have illustrated the roles of N6-methyladenosine (m6A) on NSCLC immune evasion. Here, this study investigated the function and underlying mechanism of m6A reader YTH domain family protein 3 (YTHDF3) on NSCLC immune evasion. YTHDF3 was found to be highly expressed in NSCLC tissue and act as an independent prognostic factor for overall survival. Functionally, up-regulation of YTHDF3 impaired the CD8+ T antitumor activity to deteriorate NSCLC immune evasion, while YTHDF3 silencing recovered the CD8+ T antitumor activity to inhibit immune evasion. Besides, YTHDF3 up-regulation reduced the apoptosis of NSCLC cells. Mechanistically, PD-L1 acted as the downstream target for YTHDF3, and YTHDF3 could upregulate the transcription stability of PD-L1 mRNA. Overall, YTHDF3 targeted PD-L1 to promote NSCLC immune evasion partially through escaping effector cell cytotoxicity CD8+ T mediated killing and antitumor immunity. In summary, this study provides an essential insight for m6A modification on CD8+ T cell-mediated antitumor immunity in NSCLC, which might inspire an innovation for lung cancer tumor immunotherapy.
- Published
- 2024
- Full Text
- View/download PDF
5. Gelatin Methacryloyl Bioadhesive Improves Survival and Reduces Scar Burden in a Mouse Model of Myocardial Infarction
- Author
-
Leon M. Ptaszek, Roberto Portillo Lara, Ehsan Shirzaei Sani, Chunyang Xiao, Jason Roh, Xuejing Yu, Pablo A. Ledesma, Chu Hsiang Yu, Nasim Annabi, and Jeremy N. Ruskin
- Subjects
Bioadhesive ,myocardial fibrosis ,myocardial infarction ,Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Abstract
Background Delivery of hydrogels to the heart is a promising strategy for mitigating the detrimental impact of myocardial infarction (MI). Challenges associated with the in vivo delivery of currently available hydrogels have limited clinical translation of this technology. Gelatin methacryloyl (GelMA) bioadhesive hydrogel could address many of the limitations of available hydrogels. The goal of this proof‐of‐concept study was to evaluate the cardioprotective potential of GelMA in a mouse model of MI. Methods and Results The physical properties of GelMA bioadhesive hydrogel were optimized in vitro. Impact of GelMA bioadhesive hydrogel on post‐MI recovery was then assessed in vivo. In 20 mice, GelMA bioadhesive hydrogel was applied to the epicardial surface of the heart at the time of experimental MI. An additional 20 mice underwent MI but received no GelMA bioadhesive hydrogel. Survival rates were compared for GelMA‐treated and untreated mice. Left ventricular function was assessed 3 weeks after experimental MI with transthoracic echocardiography. Left ventricular scar burden was measured with postmortem morphometric analysis. Survival rates at 3 weeks post‐MI were 89% for GelMA‐treated mice and 50% for untreated mice (P=0.011). Left ventricular contractile function was better in GelMA‐treated than untreated mice (fractional shortening 37% versus 26%, P
- Published
- 2020
- Full Text
- View/download PDF
6. Plasma Circulating Extracellular RNAs in Left Ventricular Remodeling Post-Myocardial Infarction
- Author
-
Kirsty M. Danielson, Ravi Shah, Ashish Yeri, Xiaojun Liu, Fernando Camacho Garcia, Michael Silverman, Kahraman Tanriverdi, Avash Das, Chunyang Xiao, Michael Jerosch-Herold, Bobak Heydari, Siddique Abbasi, Kendall Van Keuren-Jensen, Jane E. Freedman, Yaoyu E. Wang, Anthony Rosenzweig, Raymond Y. Kwong, and Saumya Das
- Subjects
Medicine ,Medicine (General) ,R5-920 - Abstract
Despite substantial declines in mortality following myocardial infarction (MI), subsequent left ventricular remodeling (LVRm) remains a significant long-term complication. Extracellular small non-coding RNAs (exRNAs) have been associated with cardiac inflammation and fibrosis and we hypothesized that they are associated with post-MI LVRm phenotypes. RNA sequencing of exRNAs was performed on plasma samples from patients with “beneficial” (decrease LVESVI ≥ 20%, n = 11) and “adverse” (increase LVESVI ≥ 15%, n = 11) LVRm. Selected differentially expressed exRNAs were validated by RT-qPCR (n = 331) and analyzed for their association with LVRm determined by cardiac MRI. Principal components of exRNAs were associated with LVRm phenotypes post-MI; specifically, LV mass, LV ejection fraction, LV end systolic volume index, and fibrosis. We then investigated the temporal regulation and cellular origin of exRNAs in murine and cell models and found that: 1) plasma and tissue miRNA expression was temporally regulated; 2) the majority of the miRNAs were increased acutely in tissue and at sub-acute or chronic time-points in plasma; 3) miRNA expression was cell-specific; and 4) cardiomyocytes release a subset of the identified miRNAs packaged in exosomes into culture media in response to hypoxia/reoxygenation. In conclusion, we find that plasma exRNAs are temporally regulated and are associated with measures of post-MI LVRm. Keywords: Left ventricular remodeling, Myocardial infarction, microRNA, Extracellular RNA, Cardiac magnetic resonance imaging, RNA sequencing, And inflammation
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.