156 results on '"Gangapshev, A."'
Search Results
2. Searches for new physics below twice the electron mass with GERDA
- Author
-
GERDA Collaboration, M. Agostini, A. Alexander, G. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, R. Brugnera, A. Caldwell, S. Calgaro, C. Cattadori, A. Chernogorov, P.-J. Chiu, T. Comellato, V. D’Andrea, E. V. Demidova, N. Di Marco, E. Doroshkevich, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, W. Hofmann, J. Huang, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, K. Kilgus, I. V. Kirpichnikov, A. Klimenko, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, G. Marshall, M. Misiaszek, M. Morella, Y. Müller, I. Nemchenok, M. Neuberger, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, C. Ransom, L. Rauscher, M. Redchuk, S. Riboldi, N. Rumyantseva, C. Sada, S. Sailer, F. Salamida, S. Schönert, J. Schreiner, A-K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, S. Sullivan, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, K. Zuber, and G. Zuzel
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract A search for full energy depositions from bosonic keV-scale dark matter candidates of masses between 65 and 1021 keV has been performed with data collected during Phase II of the GERmanium Detector Array (Gerda) experiment. Our analysis includes direct dark matter absorption as well as dark Compton scattering. With a total exposure of 105.5 kg years, no evidence for a signal above the background has been observed. The resulting exclusion limits deduced with either Bayesian or Frequentist statistics are the most stringent direct constraints in the major part of the 140–1021 keV mass range. As an example, at a mass of 150 keV the dimensionless coupling of dark photons and axion-like particles to electrons has been constrained to $$\alpha '/\alpha 1.5 \times 10^{24}$$ τ n > 1.5 × 10 24 years and for a proton $$\tau _\textrm{p} > 1.3 \times 10^{24}$$ τ p > 1.3 × 10 24 years at 90% CI. For the electron decay $$e^\text {-} \rightarrow \nu _\textrm{e} \gamma $$ e - → ν e γ a lower limit of $$\tau _\textrm{e} > 5.4\times 10^{25}$$ τ e > 5.4 × 10 25 years at 90% CI has been determined.
- Published
- 2024
- Full Text
- View/download PDF
3. Searches for new physics below twice the electron mass with GERDA
- Author
-
Agostini, M., Alexander, A., Araujo, G., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brugnera, R., Caldwell, A., Calgaro, S., Cattadori, C., Chernogorov, A., Chiu, P.-J., Comellato, T., D’Andrea, V., Demidova, E. V., Marco, N. Di, Doroshkevich, E., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hofmann, W., Huang, J., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kilgus, K., Kirpichnikov, I. V., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Marshall, G., Misiaszek, M., Morella, M., Müller, Y., Nemchenok, I., Neuberger, M., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Ransom, C., Rauscher, L., Redchuk, M., Riboldi, S., Rumyantseva, N., Sada, C., Sailer, S., Salamida, F., Schönert, S., Schreiner, J., Schütz, A-K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Sullivan, S., Vasenko, A. A., Veresnikova, A., Vignoli, C., Sturm, K. von, Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zuber, K., and Zuzel, G.
- Published
- 2024
- Full Text
- View/download PDF
4. Background study of the AMoRE-pilot experiment
- Author
-
Agrawal, A., Alenkov, V.V., Aryal, P., Beyer, J., Bhandari, B., Boiko, R.S., Boonin, K., Buzanov, O., Byeon, C.R., Chanthima, N., Cheoun, M.K., Choe, J.S., Choi, Seonho, Choudhury, S., Chung, J.S., Danevich, F.A., Djamal, M., Drung, D., Enss, C., Fleischmann, A., Gangapshev, A.M., Gastaldo, L., Gavrilyuk, Yu.M., Gezhaev, A.M., Gileva, O., Grigorieva, V.D., Gurentsov, V.I., Ha, C., Ha, D.H., Ha, E.J., Hwang, D.H., Jeon, E.J., Jeon, J.A., Jo, H.S., Kaewkhao, J., Kang, C.S., Kang, W.G., Kazalov, V.V., Kempf, S., Khan, A., Khan, S., Kim, D.Y., Kim, G.W., Kim, H.B., Kim, Ho-Jong, Kim, H.J., Kim, H.L., Kim, H.S., Kim, M.B., Kim, S.C., Kim, S.K., Kim, S.R., Kim, Siyeon, Kim, W.T., Kim, Y.D., Kim, Y.H., Kirdsiri, K., Ko, Y.J., Kobychev, V.V., Kornoukhov, V., Kuzminov, V.V., Kwon, D.H., Lee, C.H., Lee, DongYeup, Lee, E.K., Lee, H.J., Lee, H.S., Lee, J., Lee, J.Y., Lee, K.B., Lee, M.H., Lee, M.K., Lee, S.W., Lee, Y.C., Leonard, D.S., Lim, H.S., Mailyan, B., Makarov, E.P., Nyanda, P., Oh, Y., Olsen, S.L., Panasenko, S.I., Park, H.K., Park, H.S., Park, K.S., Park, S.Y., Polischuk, O.G., Prihtiadi, H., Ra, S., Ratkevich, S.S., Rooh, G., Sari, M.B., Seo, J., Seo, K.M., Sharma, B., Shin, K.A., Shlegel, V.N., So, J., Sokur, N.V., Son, J.K., Song, J.W., Srisittipokakun, N., Tretyak, V.I., Wirawan, R., Woo, K.R., Yeon, H.J., Yoon, Y.S., and Yue, Q.
- Published
- 2024
- Full Text
- View/download PDF
5. Baksan Large Neutrino Telescope Project: Prototypes and Perspectives
- Author
-
Lukanov, A. D., Budzinskaya, A. A., Gangapshev, A. N., Gavrin, V. N., Fazliakhmetov, A. N., Ibragimova, T. V., Kazalov, V. V., Kuzminov, V. V., Lubsandorzhiev, B. K., Malyshkin, Yu. M., Nanzanov, D. A., Novikova, G. Ya., Petkov, V. B., Shikhin, A. A., Sidorenkov, A. Yu., Smirnov, O. Yu., Ushakov, N. A., Veretenkin, E. P., Voronin, D. M., and Yanovich, E. A.
- Published
- 2023
- Full Text
- View/download PDF
6. Energy Resolution of a Neodymium-Containing Scintillation Detector for Searching Neutrinoless Double Beta Decay of 150Nd
- Author
-
Barabanov, I. R., Veresnikova, A. V., Gavrylyuk, Yu. M., Gurentsov, V. I., Gangapshev, A. M., Kazalov, V. V., Novikova, G. Ya., Kalajokov, Z. Kh., Tekueva, D. A., Thazaplichev, M. Sh., and Yanovich, E. A.
- Published
- 2023
- Full Text
- View/download PDF
7. Radioassay of the materials for AMoRE-II experiment
- Author
-
A. Agrawal, V. V. Alenkov, P. Aryal, H. Bae, J. Beyer, B. Bhandari, R. S. Boiko, K. Boonin, O. Buzanov, C. R. Byeon, N. Chanthima, M. K. Cheoun, J. S. Choe, S. Choi, S. Choudhury, J. S. Chung, F. A. Danevich, M. Djamal, D. Drung, C. Enss, A. Fleischmann, A. M. Gangapshev, L. Gastaldo, Y. M. Gavrilyuk, A. M. Gezhaev, O. Gileva, V. D. Grigorieva, V. I. Gurentsov, C. Ha, D. H. Ha, E. J. Ha, D. H. Hwang, E. J. Jeon, J. A. Jeon, H. S. Jo, J. Kaewkhao, C. S. Kang, W. G. Kang, V. V. Kazalov, S. Kempf, A. Khan, S. Khan, D. Y. Kim, G. W. Kim, H. B. Kim, H. J. Kim, H. L. Kim, H. S. Kim, M. B. Kim, S. C. Kim, S. K. Kim, S. R. Kim, W. T. Kim, Y. D. Kim, Y. H. Kim, K. Kirdsiri, Y. J. Ko, V. V. Kobychev, V. Kornoukhov, V. V. Kuzminov, D. H. Kwon, C. H. Lee, D. Y. Lee, E. K. Lee, H. J. Lee, H. S. Lee, J. Lee, J. Y. Lee, K. B. Lee, M. H. Lee, M. K. Lee, S. W. Lee, Y. C. Lee, D. S. Leonard, H. S. Lim, B. Mailyan, E. P. Makarov, P. Nyanda, Y. Oh, S. L. Olsen, S. I. Panasenko, H. K. Park, H. S. Park, K. S. Park, S. Y. Park, O. G. Polischuk, H. Prihtiadi, S. Ra, S. S. Ratkevich, G. Rooh, M. B. Sari, J. Seo, K. M. Seo, B. Sharma, K. A. Shin, V. N. Shlegel, K. Siyeon, J. So, N. V. Sokur, J. K. Son, J. W. Song, N. Srisittipokakun, V. I. Tretyak, R. Wirawan, K. R. Woo, H. J. Yeon, Y. S. Yoon, and Q. Yue
- Subjects
double beta decay ,radiopurity ,radioassay ,ICP-MS ,HPGe ,Physics ,QC1-999 - Abstract
The AMoRE-II experiment will search for the 0νββ decay of 100Mo nuclei using molybdate crystal scintillators, operating at milli-Kelvin (mK) temperatures, with a total of 80 kg of 100Mo. The background goal for the experiment is 10–4 counts/keV/kg/year in the region of interest around the 0νββ decay Q-value of 3,034 keV. To achieve this level, the rate of background signals arising from emissions produced by decays of radioactive impurities in the detector and shielding materials must be strictly controlled. To do this, concentrations of such impurities are measured and are controlled through materials selection and purification. In this paper, we describe the design and the construction materials used to build the AMoRE-II detector and shielding system, including active and passive shielding, the cryostat, and the detector holders and instrumentation, and we report on measurements of radioactive impurities within candidate and selected materials.
- Published
- 2024
- Full Text
- View/download PDF
8. Seasonal Changes of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{214}}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{213}}$$\end{document}Po and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{214}}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{213}}$$\end{document}Po Half-Life Solar-Daily Variation Parameters
- Author
-
Alexeev, E. N., Gavrilyuk, Yu. M., Gangapshev, A. M., Gezhaev, A. M., Kazalov, V. V., and Kuzminov, V. V.
- Published
- 2023
- Full Text
- View/download PDF
9. Current Status of the Baksan Large Neutrino Telescope
- Author
-
Lukanov, A. D., Voronin, D. M., Fazliakhmetov, A. N., Veretyonkin, E. P., Gangapshev, A. M., Gavrin, V. N., Ibragimova, T. V., Kazalov, V. V., Kuzminov, V. V., Lubsandorzhiev, B. K., Malyshkin, Yu. M., Nanzanov, D. A., Novikova, G. Ya., Petkov, V. B., Sidorenkov, A. Yu., Smirnov, O. Yu., Ushakov, N. A., Shikhin, A. A., and Yanovich, E. A.
- Published
- 2023
- Full Text
- View/download PDF
10. Search for tri-nucleon decays of $$^{76}$$ 76 Ge in GERDA
- Author
-
M. Agostini, A. Alexander, G. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, R. Brugnera, A. Caldwell, S. Calgaro, C. Cattadori, A. Chernogorov, P.-J. Chiu, T. Comellato, V. D’Andrea, E. V. Demidova, A. Di Giacinto, N. Di Marco, E. Doroshkevich, F. Fischer, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, W. Hofmann, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, K. Kilgus, I. V. Kirpichnikov, A. Klimenko, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, L. Manzanillas, G. Marshall, M. Misiaszek, M. Morella, Y. Müller, I. Nemchenok, M. Neuberger, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, L. Rauscher, M. Redchuk, S. Riboldi, N. Rumyantseva, C. Sada, S. Sailer, F. Salamida, S. Schönert, J. Schreiner, M. Schütt, A.-K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, S. Sullivan, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, A. J. Zsigmond, K. Zuber, G. Zuzel, and GERDA collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract We search for tri-nucleon decays of $$^{76}$$ 76 Ge in the dataset from the GERmanium Detector Array (GERDA) experiment. Decays that populate excited levels of the daughter nucleus above the threshold for particle emission lead to disintegration and are not considered. The ppp-, ppn-, and pnn-decays lead to $$^{73}$$ 73 Cu, $$^{73}$$ 73 Zn, and $$^{73}$$ 73 Ga nuclei, respectively. These nuclei are unstable and eventually proceed by the beta decay of $$^{73}$$ 73 Ga to $$^{73}$$ 73 Ge (stable). We search for the $$^{73}$$ 73 Ga decay exploiting the fact that it dominantly populates the 66.7 keV $$^{73m}$$ 73 m Ga state with half-life of 0.5 s. The nnn-decays of $$^{76}$$ 76 Ge that proceed via $$^{73m}$$ 73 m Ge are also included in our analysis. We find no signal candidate and place a limit on the sum of the decay widths of the inclusive tri-nucleon decays that corresponds to a lower lifetime limit of 1.2 $$\times $$ × 10 $$^{26}$$ 26 yr (90% credible interval). This result improves previous limits for tri-nucleon decays by one to three orders of magnitude.
- Published
- 2023
- Full Text
- View/download PDF
11. Liquid argon light collection and veto modeling in GERDA Phase II
- Author
-
M. Agostini, A. Alexander, G. R. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, R. Brugnera, A. Caldwell, S. Calgaro, C. Cattadori, A. Chernogorov, P. -J. Chiu, T. Comellato, V. D’Andrea, E. V. Demidova, A. Di Giacinto, N. Di Marco, E. Doroshkevich, F. Fischer, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, W. Hofmann, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, K. Kilgus, I. V. Kirpichnikov, A. Klimenko, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, B. Lehnert, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, L. Manzanillas, G. Marshall, M. Miloradovic, R. Mingazheva, M. Misiaszek, M. Morella, Y. Müller, I. Nemchenok, M. Neuberger, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, L. Rauscher, M. Redchuk, S. Riboldi, N. Rumyantseva, C. Sada, S. Sailer, F. Salamida, S. Schönert, J. Schreiner, M. Schütt, A. -K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, S. Sullivan, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, A. Wegmann, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, A. J. Zsigmond, K. Zuber, G. Zuzel, and Gerda collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the Gerda experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of $${}^{76}$$ 76 Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detection by the novel light read-out system, provides insight into the rejection capability and is a necessary ingredient to obtain robust background predictions. In this paper, we present a model of the Gerda liquid argon veto, as obtained by Monte Carlo simulations and constrained by calibration data, and highlight its application for background decomposition.
- Published
- 2023
- Full Text
- View/download PDF
12. Search for tri-nucleon decays of 76Ge in GERDA
- Author
-
Agostini, M., Alexander, A., Araujo, G., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brugnera, R., Caldwell, A., Calgaro, S., Cattadori, C., Chernogorov, A., Chiu, P.-J., Comellato, T., D’Andrea, V., Demidova, E. V., Di Giacinto, A., Di Marco, N., Doroshkevich, E., Fischer, F., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L. V., Janicskó Csáthy, J., Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kilgus, K., Kirpichnikov, I. V., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Manzanillas, L., Marshall, G., Misiaszek, M., Morella, M., Müller, Y., Nemchenok, I., Neuberger, M., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Rauscher, L., Redchuk, M., Riboldi, S., Rumyantseva, N., Sada, C., Sailer, S., Salamida, F., Schönert, S., Schreiner, J., Schütt, M., Schütz, A.-K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Sullivan, S., Vasenko, A. A., Veresnikova, A., Vignoli, C., von Sturm, K., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Published
- 2023
- Full Text
- View/download PDF
13. Characteristics of a matrix proportional counter with circular anodes
- Author
-
Etezov, R.A., Gavrilyuk, Yu.M., Gangapshev, A.M., Kazalov, V.V., Khokonov, A.Kh., and Kuzminov, V.V.
- Published
- 2023
- Full Text
- View/download PDF
14. Alpha backgrounds in the AMoRE-Pilot experiment
- Author
-
V. Alenkov, H. W. Bae, J. Beyer, R. S. Boiko, K. Boonin, O. Buzanov, N. Chanthima, M. K. Cheoun, S. H. Choi, F. A. Danevich, M. Djamal, D. Drung, C. Enss, A. Fleischmann, A. Gangapshev, L. Gastaldo, Yu. M. Gavriljuk, A. Gezhaev, V. D. Grigoryeva, V. Gurentsov, D. H. Ha, C. Ha, E. J. Ha, I. Hahn, E. J. Jeon, J. Jeon, H. S. Jo, J. Kaewkhao, C. S. Kang, S. J. Kang, W. G. Kang, S. Karki, V. Kazalov, A. Khan, S. Khan, D.-Y. Kim, G. W. Kim, H. B. Kim, H. J. Kim, H. L. Kim, H. S. Kim, I. Kim, W. T. Kim, S. R. Kim, S. C. Kim, S. K. Kim, Y. D. Kim, Y. H. Kim, K. Kirdsiri, Y. J. Ko, V. V. Kobychev, V. Kornoukhov, V. Kuz’minov, D. H. Kwon, C. Lee, E. K. Lee, H. J. Lee, H. S. Lee, J. Lee, J. S. Lee, J. Y. Lee, K. B. Lee, M. H. Lee, M. K. Lee, S. H. Lee, S. W. Lee, D. S. Leonard, J. Li, Y. Li, P. Limkitjaroenporn, B. Mailyan, E. P. Makarov, S. Y. Oh, Y. M. Oh, O. Gileva, S. Olsen, A. Pabitra, S. Panasenko, I. Pandey, C. W. Park, H. K. Park, H. S. Park, K. S. Park, S. Y. Park, O. G. Polischuk, H. Prihtiadi, S. J. Ra, S. Ratkevich, G. Rooh, M. B. Sari, J. Seo, K. M. Seo, J. W. Shin, K. A. Shin, V. N. Shlegel, K. Siyeon, N. V. Sokur, J.-K. Son, N. Srisittipokakun, N. Toibaev, V. I. Tretyak, R. Wirawan, K. R. Woo, Y. S. Yoon, and Q. Yue
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The Advanced Mo-based Rare process Experiment (AMoRE)-Pilot experiment is an initial phase of the AMoRE search for neutrinoless double beta decay of $$^{100}$$ 100 Mo, with the purpose of investigating the level and sources of backgrounds. Searches for neutrinoless double beta decay generally require ultimately low backgrounds. Surface $$\alpha $$ α decays on the crystals themselves or nearby materials can deposit a continuum of energies that can be as high as the Q-value of the decay itself and may fall in the region of interest (ROI). To understand these background events, we studied backgrounds from radioactive contaminations internal to and on the surface of the crystals or nearby materials with Geant4-based Monte Carlo simulations. In this study, we report on the measured $$\alpha $$ α energy spectra fitted with the corresponding simulated spectra for six crystal detectors, where sources of background contributions could be identified through high energy $$\alpha $$ α peaks and continuum parts in the energy spectrum for both internal and surface contaminations. We determine the low-energy contributions from internal and surface $$\alpha $$ α contaminations by extrapolating from the $$\alpha $$ α background fitting model.
- Published
- 2022
- Full Text
- View/download PDF
15. Radionuclide activity in cryoconite from glaciers of the Central Caucasus, Russia
- Author
-
Evgeny Abakumov, Albert Gangapshev, Ali Gezhaev, and Rustam Tembotov
- Subjects
Glacier surface ,Soil ,Pollution ,Radioactivity ,Gamma-spectrometry ,Deglaciation ,Geology ,QE1-996.5 - Abstract
This work presents the results of a study of radionuclide activity in cryoconite from glacier and glacial soil of the Central Caucasus. Cryoconite were sampled from the surface of the Garabashi glacier, and soil samples were taken from the humus horizon of periglacial mountain forest-meadow soil. Measurements were performed with low-background germanium gamma spectrometers located inside a passive shield consisting of ∼20 cm of copper, ∼15 cm of lead, and ∼8 cm of borated polyethylene. The specific activity of radionuclides (Be-7, K-40, Th-232, U-235, U-238, Cs-137) was established. It was revealed that all measured spectra contain γ-lines from decays of K-40, decay chains of U-238, U-235 and Th-232. In addition, the spectra of cryoconite samples from the Garabashi glacier show a 477.6 keV line from the decay of the cosmogenic isotope Be-7, and in the soil sample a 661.7 keV line from the radionuclide Cs-137. No radionuclide Be-7 was detected in the mountain forest-meadow soil. Radionuclide Cs-137 is present in the soil sample, while in cryoconite, is not detected. Radioisotope activities in the Garabashi glacier cryoconite, except for the cosmogenic isotope Be-7, do not differ significantly in terms of mass, i.e., the content of K-40, U-238, U-235 and Th-232 in them is approximately the same. The activity of all the studied radionuclides in the soil sample compared to cryoconite samples is lower, although the differences are not significant, except for Th-232, whose activity in soil is almost two times lower.
- Published
- 2022
- Full Text
- View/download PDF
16. Liquid argon light collection and veto modeling in GERDA Phase II
- Author
-
Agostini, M., Alexander, A., Araujo, G. R., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brugnera, R., Caldwell, A., Calgaro, S., Cattadori, C., Chernogorov, A., Chiu, P. -J., Comellato, T., D’Andrea, V., Demidova, E. V., Di Giacinto, A., Di Marco, N., Doroshkevich, E., Fischer, F., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kilgus, K., Kirpichnikov, I. V., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lehnert, B., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Manzanillas, L., Marshall, G., Miloradovic, M., Mingazheva, R., Misiaszek, M., Morella, M., Müller, Y., Nemchenok, I., Neuberger, M., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Rauscher, L., Redchuk, M., Riboldi, S., Rumyantseva, N., Sada, C., Sailer, S., Salamida, F., Schönert, S., Schreiner, J., Schütt, M., Schütz, A. -K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Sullivan, S., Vasenko, A. A., Veresnikova, A., Vignoli, C., von Sturm, K., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Published
- 2023
- Full Text
- View/download PDF
17. New Constraints on the Axion–Electron Coupling Constant for Solar Axions
- Author
-
Gavrilyuk, Yu. M., Gangapshev, A. N., Derbin, A. V., Drachnev, I. S., Kazalov, V. V., Kuzminov, V. V., Mikulich, M. S., Muratova, V. N., Tekueva, D. A., Unzhakov, E. V., and Yakimenko, S. P.
- Published
- 2022
- Full Text
- View/download PDF
18. 2K(2\nu)-Capture in Xe-124: Results of Data Processing for an Exposure of 37.7 kg x day
- Author
-
Gavriljuk, Yu. M., Gangapshev, A. M., Kazalov, V. V., Kuzminov, V. V., Panasenko, S. I., Ratkevich, S. S., and Tekueva, D. A.
- Subjects
Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
The results of the experimental search for two-neutrino $2K$-capture in $^{124}$Xe with a large copper proportional counter obtained by processing the data for an exposure of 37.7 kg$\times$day are presented. The experimental setup is located at the Underground Low-Background Laboratory of the Baksan Neutrino Observatory at a depth of 4900 m w.e. The combination of methods of selection of useful signals with a unique set of characteristics and the event topology taken into account allowed us to suppress the background in the energy region of interest. A new half-life limit for $2K(2\nu)$-capture in $^{124}$Xe was determined: T$_{1/2}\geq7.7\cdot10^{21}$ yrs (90\% C.L.)., Comment: 5 pages, 4 figures; to be published in PEPAN
- Published
- 2018
- Full Text
- View/download PDF
19. Radionuclide activity in cryoconite from glaciers of the Central Caucasus, Russia
- Author
-
Abakumov, Evgeny, Gangapshev, Albert, Gezhaev, Ali, and Tembotov, Rustam
- Published
- 2022
- Full Text
- View/download PDF
20. Cytobacillus pseudoceanisediminis sp. nov., A Novel Facultative Methylotrophic Bacterium with High Heavy Metal Resistance Isolated from the Deep Underground Saline Spring
- Author
-
Tarasov, Kirill, Yakhnenko, Alena, Zarubin, Mikhail, Gangapshev, Albert, Potekhina, Natalia V., Avtukh, Alexander N., and Kravchenko, Elena
- Published
- 2023
- Full Text
- View/download PDF
21. Pulse shape analysis in Gerda Phase II
- Author
-
M. Agostini, G. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, E. Bellotti, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, V. Brudanin, R. Brugnera, A. Caldwell, C. Cattadori, A. Chernogorov, T. Comellato, V. D’Andrea, E. V. Demidova, N. Di Marco, E. Doroshkevich, F. Fischer, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, R. Hiller, W. Hofmann, J. Huang, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, K. Kilgus, A. Kirsch, I. V. Kirpichnikov, A. Klimenko, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, A. Lazzaro, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, L. Manzanillas, M. Miloradovic, R. Mingazheva, M. Misiaszek, Y. Müller, I. Nemchenok, K. Panas, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, C. Ransom, L. Rauscher, M. Redchuk, S. Riboldi, N. Rumyantseva, C. Sada, F. Salamida, S. Schönert, J. Schreiner, M. Schütt, A. -K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, V. Wagner, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, A. J. Zsigmond, K. Zuber, G. Zuzel, and GERDA collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- $$\beta $$ β decay in $$^{76}$$ 76 Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011–2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015–2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events. Data from regular $$^{228}$$ 228 Th calibrations and physics data were both considered in the evaluation of the pulse shape discrimination performance. In this work, we describe the various methods applied to the data collected in Gerda Phase II corresponding to an exposure of 103.7 kg year. These methods suppress the background by a factor of about 5 in the region of interest around $$Q_{\beta \beta }= 2039$$ Q β β = 2039 keV, while preserving $$(81\pm 3)$$ ( 81 ± 3 ) % of the signal. In addition, an exhaustive list of parameters is provided which were used in the final data analysis.
- Published
- 2022
- Full Text
- View/download PDF
22. Alpha backgrounds in the AMoRE-Pilot experiment
- Author
-
Alenkov, V., Bae, H. W., Beyer, J., Boiko, R. S., Boonin, K., Buzanov, O., Chanthima, N., Cheoun, M. K., Choi, S. H., Danevich, F. A., Djamal, M., Drung, D., Enss, C., Fleischmann, A., Gangapshev, A., Gastaldo, L., Gavriljuk, Yu. M., Gezhaev, A., Grigoryeva, V. D., Gurentsov, V., Ha, D. H., Ha, C., Ha, E. J., Hahn, I., Jeon, E. J., Jeon, J., Jo, H. S., Kaewkhao, J., Kang, C. S., Kang, S. J., Kang, W. G., Karki, S., Kazalov, V., Khan, A., Khan, S., Kim, D.-Y., Kim, G. W., Kim, H. B., Kim, H. J., Kim, H. L., Kim, H. S., Kim, I., Kim, W. T., Kim, S. R., Kim, S. C., Kim, S. K., Kim, Y. D., Kim, Y. H., Kirdsiri, K., Ko, Y. J., Kobychev, V. V., Kornoukhov, V., Kuz’minov, V., Kwon, D. H., Lee, C., Lee, E. K., Lee, H. J., Lee, H. S., Lee, J., Lee, J. S., Lee, J. Y., Lee, K. B., Lee, M. H., Lee, M. K., Lee, S. H., Lee, S. W., Lee, S. W., Leonard, D. S., Li, J., Li, Y., Limkitjaroenporn, P., Mailyan, B., Makarov, E. P., Oh, S. Y., Oh, Y. M., Gileva, O., Olsen, S., Pabitra, A., Panasenko, S., Pandey, I., Park, C. W., Park, H. K., Park, H. S., Park, K. S., Park, S. Y., Polischuk, O. G., Prihtiadi, H., Ra, S. J., Ratkevich, S., Rooh, G., Sari, M. B., Seo, J., Seo, K. M., Shin, J. W., Shin, K. A., Shlegel, V. N., Siyeon, K., Sokur, N. V., Son, J.-K., Srisittipokakun, N., Toibaev, N., Tretyak, V. I., Wirawan, R., Woo, K. R., Yoon, Y. S., and Yue, Q.
- Published
- 2022
- Full Text
- View/download PDF
23. Simulation of the Neutron Sources in a Granite Tunnel
- Author
-
Yakimenko, S. P., Gangapshev, A. V., Kazalov, V. V., Gavrilyuk, Yu. M., and Gezhaev, A. M.
- Published
- 2022
- Full Text
- View/download PDF
24. Calibration of the Gerda experiment
- Author
-
M. Agostini, G. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, E. Bellotti, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, V. Brudanin, R. Brugnera, A. Caldwell, C. Cattadori, A. Chernogorov, T. Comellato, V. D’Andrea, E. V. Demidova, N. Di Marco, E. Doroshkevich, F. Fischer, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, R. Hiller, W. Hofmann, J. Huang, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, I. V. Kirpichnikov, A. Klimenko, R. Kneißl, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, L. Manzanillas, M. Miloradovic, R. Mingazheva, M. Misiaszek, P. Moseev, Y. Müller, I. Nemchenok, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, C. Ransom, L. Rauscher, S. Riboldi, N. Rumyantseva, C. Sada, F. Salamida, S. Schönert, J. Schreiner, M. Schütt, A-K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, A. J. Zsigmond, K. Zuber, G. Zuzel, and Gerda Collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- $$\beta $$ β decay in $$^{76}$$ 76 Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at $$Q_{\beta \beta }$$ Q β β $$=2039.061(7)$$ = 2039.061 ( 7 ) keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double- $$\beta $$ β decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular $$^{228}$$ 228 Th calibrations. In this work, we describe the calibration process and associated data analysis of the full Gerda dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years.
- Published
- 2021
- Full Text
- View/download PDF
25. Characterization of inverted coaxial $$^{76}$$ 76 Ge detectors in GERDA for future double- $$\beta $$ β decay experiments
- Author
-
M. Agostini, G. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, E. Bellotti, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, V. Brudanin, R. Brugnera, A. Caldwell, C. Cattadori, A. Chernogorov, T. Comellato, V. D’Andrea, E. V. Demidova, N. Di Marco, E. Doroshkevich, F. Fischer, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, W. Hofmann, J. Huang, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, I. V. Kirpichnikov, A. Klimenko, R. Kneißl, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, L. Manzanillas, M. Miloradovic, R. Mingazheva, M. Misiaszek, P. Moseev, Y. Müller, I. Nemchenok, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, C. Ransom, L. Rauscher, S. Riboldi, N. Rumyantseva, C. Sada, F. Salamida, S. Schönert, J. Schreiner, M. Schütt, A.-K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, A. J. Zsigmond, K. Zuber, G. Zuzel, and Gerda Collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract Neutrinoless double- $$\beta $$ β decay of $$^{76}$$ 76 Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in $$^{76}$$ 76 Ge. IC detectors combine the large mass of the traditional semi-coaxial Ge detectors with the superior resolution and pulse shape discrimination power of point contact detectors which exhibited so far much lower mass. Their performance has been found to be satisfactory both when operated in vacuum cryostat and bare in liquid argon within the Gerda setup. The measured resolutions at the Q-value for double- $$\beta $$ β decay of $$^{76}$$ 76 Ge ( $$Q_{\beta \beta }$$ Q β β = 2039 keV) are about 2.1 keV full width at half maximum in vacuum cryostat. After 18 months of operation within the ultra-low background environment of the GERmanium Detector Array (Gerda) experiment and an accumulated exposure of 8.5 kg $$\cdot $$ · year, the background index after analysis cuts is measured to be $$4.9^{+7.3}_{-3.4}\times 10^{-4} \ \text {counts}/(\text {keV} \cdot \text {kg} \cdot \text {year})$$ 4 . 9 - 3.4 + 7.3 × 10 - 4 counts / ( keV · kg · year ) around $$Q_{\beta \beta }$$ Q β β . This work confirms the feasibility of IC detectors for the next-generation experiment Legend.
- Published
- 2021
- Full Text
- View/download PDF
26. Pulse shape analysis in Gerda Phase II
- Author
-
Agostini, M., Araujo, G., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., Comellato, T., D’Andrea, V., Demidova, E. V., Marco, N. Di, Doroshkevich, E., Fischer, F., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hiller, R., Hofmann, W., Huang, J., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kilgus, K., Kirsch, A., Kirpichnikov, I. V., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Manzanillas, L., Miloradovic, M., Mingazheva, R., Misiaszek, M., Müller, Y., Nemchenok, I., Panas, K., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Ransom, C., Rauscher, L., Redchuk, M., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Schönert, S., Schreiner, J., Schütt, M., Schütz, A. -K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Vasenko, A. A., Veresnikova, A., Vignoli, C., Sturm, K. von, Wagner, V., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Published
- 2022
- Full Text
- View/download PDF
27. Modeling of a MeV-scale particle detector based on organic liquid scintillator
- Author
-
Malyshkin, Yu.M., Fazliakhmetov, A.N., Gangapshev, A.M., Gavrin, V.N., Ibragimova, T.V., Kochkarov, M.M., Kazalov, V.V., Kudrin, D.Yu., Kuzminov, V.V., Lubsandorzhiev, B.K., Novikova, G.Ya., Petkov, V.B., Shikhin, A.A., Sidorenkov, A.Yu., Ushakov, N.A., Veretenkin, E.P., Voronin, D.M., and Yanovich, E.A.
- Published
- 2020
- Full Text
- View/download PDF
28. Modeling of GERDA Phase II data
- Author
-
The GERDA collaboration, M. Agostini, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, E. Bellotti, S. Belogurov, A. Bettini, L. Bezrukov, D. Borowicz, E. Bossio, V. Bothe, V. Brudanin, R. Brugnera, A. Caldwell, C. Cattadori, A. Chernogorov, T. Comellato, V. D’Andrea, E. V. Demidova, N. Di Marco, A. Domula, E. Doroshkevich, V. Egorov, F. Fischer, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, R. Hiller, W. Hofmann, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, T. Kihm, I. V. Kirpichnikov, A. Klimenko, R. Kneißl, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, A. Lazzaro, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, M. Miloradovic, R. Mingazheva, M. Misiaszek, P. Moseev, I. Nemchenok, K. Panas, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, C. Ransom, S. Riboldi, N. Rumyantseva, C. Sada, F. Salamida, S. Schönert, J. Schreiner, M. Schütt, A-K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, H. Simgen, A. Smolnikov, D. Stukov, L. Vanhoefer, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, A. J. Zsigmond, K. Zuber, and G. Zuzel
- Subjects
Dark Matter and Double Beta Decay (experiments) ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ) decay of 76Ge. The technological challenge of Gerda is to operate in a “background-free” regime in the region of interest (ROI) after analysis cuts for the full 100 kg·yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around Q ββ for the 0νββ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for Gerda Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.04 − 0.85 + 0.78 · 10 − 3 $$ {16.04}_{-0.85}^{+0.78}\cdotp {10}^{-3} $$ cts/(keV·kg·yr) for the enriched BEGe data set and 14.68 − 0.52 + 0.47 · 10 − 3 $$ {14.68}_{-0.52}^{+0.47}\cdotp {10}^{-3} $$ cts/(keV·kg·yr) for the enriched coaxial data set. These values are similar to the one of Phase I despite a much larger number of detectors and hence radioactive hardware components.
- Published
- 2020
- Full Text
- View/download PDF
29. Calibration of the Gerda experiment
- Author
-
Agostini, M., Araujo, G., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., Comellato, T., D’Andrea, V., Demidova, E. V., Marco, N. Di, Doroshkevich, E., Fischer, F., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hiller, R., Hofmann, W., Huang, J., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kirpichnikov, I. V., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Manzanillas, L., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Müller, Y., Nemchenok, I., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Ransom, C., Rauscher, L., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Schönert, S., Schreiner, J., Schütt, M., Schütz, A-K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Vasenko, A. A., Veresnikova, A., Vignoli, C., von Sturm, K., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Published
- 2021
- Full Text
- View/download PDF
30. Characterization of 30 $$^{76}$$ 76 Ge enriched Broad Energy Ge detectors for GERDA Phase II
- Author
-
M. Agostini, A. M. Bakalyarov, E. Andreotti, M. Balata, I. Barabanov, L. Baudis, N. Barros, C. Bauer, E. Bellotti, S. Belogurov, G. Benato, A. Bettini, L. Bezrukov, T. Bode, D. Borowicz, V. Brudanin, R. Brugnera, D. Budjáš, A. Caldwell, C. Cattadori, A. Chernogorov, V. D’Andrea, E. V. Demidova, N. Di Marco, A. Domula, E. Doroshkevich, V. Egorov, R. Falkenstein, K. Freund, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, A. Hegai, M. Heisel, S. Hemmer, R. Hiller, W. Hofmann, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, T. Kihm, I. V. Kirpichnikov, A. Kirsch, A. Kish, A. Klimenko, R. Kneißl, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, V. V. Kuzminov, M. Laubenstein, A. Lazzaro, B. Lehnert, Y. Liao, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, G. Marissens, M. Miloradovic, R. Mingazheva, M. Misiaszek, P. Moseev, I. Nemchenok, K. Panas, L. Pandola, K. Pelczar, A. Pullia, C. Ransom, S. Riboldi, N. Rumyantseva, C. Sada, F. Salamida, M. Salathe, C. Schmitt, B. Schneider, S. Schönert, A.-K. Schütz, O. Schulz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, H. Simgen, A. Smolnikov, L. Stanco, L. Vanhoefer, A. A. Vasenko, A. Veresnikova, K. von Sturm, V. Wagner, A. Wegmann, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. J. Zsigmond, K. Zuber, G. Zuzel, and GERDA Collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of $$^{76}$$ 76 Ge into $$^{76}$$ 76 Se+2e$$^-$$ - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.
- Published
- 2019
- Full Text
- View/download PDF
31. First results from the AMoRE-Pilot neutrinoless double beta decay experiment
- Author
-
V. Alenkov, H. W. Bae, J. Beyer, R. S. Boiko, K. Boonin, O. Buzanov, N. Chanthima, M. K. Cheoun, D. M. Chernyak, J. S. Choe, S. Choi, F. A. Danevich, M. Djamal, D. Drung, C. Enss, A. Fleischmann, A. M. Gangapshev, L. Gastaldo, Yu. M. Gavriljuk, A. M. Gezhaev, V. D. Grigoryeva, V. I. Gurentsov, O. Gylova, C. Ha, D. H. Ha, E. J. Ha, I. S. Hahn, C. H. Jang, E. J. Jeon, J. A. Jeon, H. S. Jo, J. Kaewkhao, C. S. Kang, S. J. Kang, W. G. Kang, V. V. Kazalov, S. Kempf, A. Khan, S. Khan, D. Y. Kim, G. W. Kim, H. B. Kim, H. J. Kim, H. L. Kim, H. S. Kim, I. Kim, S. C. Kim, S. G. Kim, S. K. Kim, S. R. Kim, W. T. Kim, Y. D. Kim, Y. H. Kim, K. Kirdsiri, Y. J. Ko, V. V. Kobychev, V. Kornoukhov, V. V. Kuzminov, D. H. Kwon, C. Lee, E. K. Lee, H. J. Lee, H. S. Lee, J. S. Lee, J. Y. Lee, K. B. Lee, M. H. Lee, M. K. Lee, S. W. Lee, S. H. Lee, D. Leonard, J. Li, Y. Li, P. Limkitjaroenporn, E. P. Makarov, S. Y. Oh, Y. M. Oh, S. L. Olsen, A. Pabitra, S. I. Panasenko, I. Pandey, C. W. Park, H. K. Park, H. S. Park, K. S. Park, S. Y. Park, D. V. Poda, O. G. Polischuk, H. Prihtiadi, S. J. Ra, S. S. Ratkevich, G. Rooh, M. B. Sari, K. M. Seo, J. W. Shin, K. A. Shin, V. N. Shlegel, K. Siyeon, J. H. So, J. K. Son, N. Srisittipokakun, K. Sujita, V. I. Tretyak, R. Wirawan, K. R. Woo, Y. S. Yoon, Q. Yue, and S. U. Zaman
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The advanced molybdenum-based rare process experiment (AMoRE) aims to search for neutrinoless double beta decay ($$0\nu \beta \beta $$ 0νββ ) of $$^{100}$$ 100 Mo with $$\sim 100\,\hbox {kg}$$ ∼100kg of $$^{100}$$ 100 Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and light readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from $$^{48}$$ 48 Ca-depleted calcium and $$^{100}$$ 100 Mo-enriched molybdenum ($$^{48{{\text {depl}}}}\hbox {Ca}^{100}\hbox {MoO}_{4}$$ 48deplCa100MoO4 ). The simultaneous detection of heat (phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot $$0\nu \beta \beta $$ 0νββ search with a 111 kg day live exposure of $$^{48{{\text {depl}}}}\hbox {Ca}^{100}\hbox {MoO}_{4}$$ 48deplCa100MoO4 crystals. No evidence for $$0\nu \beta \beta $$ 0νββ decay of $$^{100}$$ 100 Mo is found, and a upper limit is set for the half-life of $$0\nu \beta \beta $$ 0νββ of $$^{100}$$ 100 Mo of $$T^{0\nu }_{1/2} > 9.5\times 10^{22}~\hbox {years}$$ T1/20ν>9.5×1022years at 90% C.L. This limit corresponds to an effective Majorana neutrino mass limit in the range $$\langle m_{\beta \beta }\rangle \le (1.2-2.1)\,\hbox {eV}$$ ⟨mββ⟩≤(1.2-2.1)eV .
- Published
- 2019
- Full Text
- View/download PDF
32. Characterization of inverted coaxial 76βGe detectors in GERDA for future double-76β decay experiments
- Author
-
Agostini, M., Araujo, G., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., Comellato, T., D’Andrea, V., Demidova, E. V., Marco, N. Di, Doroshkevich, E., Fischer, F., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hofmann, W., Huang, J., Hult, M., Inzhechik, L. V., Janicskó Csáthy, J., Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kirpichnikov, I. V., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Manzanillas, L., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Müller, Y., Nemchenok, I., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Ransom, C., Rauscher, L., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Schönert, S., Schreiner, J., Schütt, M., Schütz, A.-K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Vasenko, A. A., Veresnikova, A., Vignoli, C., von Sturm, K., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Published
- 2021
- Full Text
- View/download PDF
33. First transcriptome profiling of D. melanogaster after development in a deep underground low radiation background laboratory
- Author
-
Mikhail Zarubin, Albert Gangapshev, Yuri Gavriljuk, Vladimir Kazalov, and Elena Kravchenko
- Subjects
Medicine ,Science - Abstract
Natural background radiation is a permanent multicomponent factor. It has an influence on biological organisms, but effects of its deprivation still remain unclear. The aim of our work was to study for the first time responses of D. melanogaster to conditions of the Deep Underground Low-Background Laboratory DULB-4900 (BNO, INR, RAS, Russia) at the transcriptome level by RNA-seq profiling. Overall 77 transcripts demonstrated differential abundance between flies exposed to low and natural background radiation. Enriched biological process functional categories were established for all genes with differential expression. The results showed down-regulation of primary metabolic processes and up-regulation of both the immune system process and the response to stimuli. The comparative analysis of our data and publicly available transcriptome data on D. melanogaster exposed to low and high doses of ionizing radiation did not reveal common DEGs in them. We hypothesize that the observed changes in gene expression can be explained by the influence of the underground conditions in DULB-4900, in particular, by the lack of stimuli. Thus, our study challenges the validity of the LNT model for the region of background radiation doses below a certain level (~16.4 nGy h-1) and the presence of a dose threshold for D. melanogaster.
- Published
- 2021
34. Upgrade for Phase II of the Gerda experiment
- Author
-
GERDA Collaboration, M. Agostini, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, E. Bellotti, S. Belogurov, S. T. Belyaev, G. Benato, A. Bettini, L. Bezrukov, T. Bode, D. Borowicz, V. Brudanin, R. Brugnera, A. Caldwell, C. Cattadori, A. Chernogorov, V. D’Andrea, E. V. Demidova, N. Di Marco, A. Domula, E. Doroshkevich, V. Egorov, R. Falkenstein, N. Frodyma, A. Gangapshev, A. Garfagnini, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, A. Hegai, M. Heisel, S. Hemmer, R. Hiller, W. Hofmann, M. Hult, L. V. Inzhechik, L. Ioannucci, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, T. Kihm, I. V. Kirpichnikov, A. Kirsch, A. Kish, A. Klimenko, R. Kneißl, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, V. V. Kuzminov, M. Laubenstein, A. Lazzaro, V. I. Lebedev, B. Lehnert, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, E. Medinaceli, M. Miloradovic, R. Mingazheva, M. Misiaszek, P. Moseev, I. Nemchenok, S. Nisi, K. Panas, L. Pandola, K. Pelczar, A. Pullia, C. Ransom, S. Riboldi, N. Rumyantseva, C. Sada, F. Salamida, M. Salathe, C. Schmitt, B. Schneider, S. Schönert, J. Schreiner, A-K. Schütz, O. Schulz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, H. Simgen, A. Smolnikov, L. Stanco, L. Vanhoefer, A. A. Vasenko, A. Veresnikova, K. von Sturm, V. Wagner, A. Wegmann, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. J. Zsigmond, K. Zuber, and G. Zuzel
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of $$^{76}\hbox {Ge}$$ 76Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain “background-free” up to its design exposure ($$\hbox {100 kg}~\hbox {year}$$ 100 kgyear ). It will reach thereby a half-life sensitivity of more than $$10^{26}$$ 1026 year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.
- Published
- 2018
- Full Text
- View/download PDF
35. Mitigation of $$^{42}$$ 42 Ar/$$^{42}$$ 42 K background for the GERDA Phase II experiment
- Author
-
A. Lubashevskiy, M. Agostini, D. Budjáš, A. Gangapshev, K. Gusev, M. Heisel, A. Klimenko, A. Lazzaro, B. Lehnert, K. Pelczar, S. Schönert, A. Smolnikov, M. Walter, and G. Zuzel
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract Background coming from the $$^{42}$$ 42 Ar decay chain is considered to be one of the most relevant for the Gerda experiment, which searches for the neutrinoless double beta decay of $$^{76}$$ 76 Ge. The sensitivity strongly relies on the absence of background around the Q-value of the decay. Background coming from $$^{42}$$ 42 K, a progeny of $$^{42}$$ 42 Ar, can contribute to that background via electrons from the continuous spectrum with an endpoint at 3.5 MeV. Research and development on the suppression methods targeting this source of background were performed at the low-background test facility LArGe . It was demonstrated that by reducing $$^{42}$$ 42 K ion collection on the surfaces of the broad energy germanium detectors in combination with pulse shape discrimination techniques and an argon scintillation veto, it is possible to suppress $$^{42}$$ 42 K background by three orders of magnitude. This is sufficient for Phase II of the Gerda experiment.
- Published
- 2018
- Full Text
- View/download PDF
36. Limits on uranium and thorium bulk content in Gerda Phase I detectors
- Author
-
collaboration, GERDA, Agostini, M., Allardt, M., Bakalyarov, A.M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Becerici-Schmidt, N., Bellotti, E., Belogurov, S., Belyaev, S.T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., D’Andrea, V., Demidova, E.V., di Vacri, A., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Grabmayr, P., Gurentsov, V., Gusev, K., Hakemüller, J., Hegai, A., Heisel, M., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L.V., Janicskó Csáthy, J., Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I.V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K.T., Kochetov, O., Kornoukhov, V.N., Kuzminov, V.V., Laubenstein, M., Lazzaro, A., Lebedev, V.I., Lehnert, B., Liao, H.Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schreiner, J., Schütz, A.-K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Stepaniuk, M., Vanhoefer, L., Vasenko, A.A., Veresnikova, A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S.V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Published
- 2017
- Full Text
- View/download PDF
37. Some features and results of thermal neutron background measurements with the [ZnS(Ag)+6LiF] scintillation detector
- Author
-
Kuzminov, V.V., Alekseenko, V.V., Barabanov, I.R., Etezov, R.A., Gangapshev, A.M., Gavrilyuk, Yu.M., Gezhaev, A.M., Kazalov, V.V., Khokonov, A.Kh., Panasenko, S.I., and Ratkevich, S.S.
- Published
- 2017
- Full Text
- View/download PDF
38. The Study of Radioactive Contaminations within the Production Processes of Metal Titanium for Low-Background Experiments.
- Author
-
Zykova, Marina, Voronina, Elena, Chepurnov, Alexander, Leder, Mikhail, Kornilova, Maria, Tankeev, Alexey, Vlasov, Sergey, Chub, Alexander, Gangapshev, Albert, Gezhaev, Ali, Tekueva, Dzhamilya, and Avetisov, Igor
- Subjects
URANIUM ,THORIUM isotopes ,SOLAR neutrinos ,RADIOACTIVE contamination ,TITANIUM powder ,MANUFACTURING processes ,TITANIUM ,COLD rolling ,INDUCTIVELY coupled plasma mass spectrometry - Abstract
Ultra-low-radioactivity titanium alloys are promising materials for the manufacture of low-background detectors which are being developed for experiments in astroparticle physics and neutrino astrophysics. Structural titanium is manufactured on an industrial scale from titanium sponge. The ultra-low-background titanium sponge can be produced on an industrial scale with a contamination level of less than 1 mBq/kg of uranium and thorium isotopes. The pathways of contaminants during the industrial production of structural titanium were analyzed. The measurements were carried out using two methods: inductively coupled plasma mass spectroscopy (ICP-MS) and gamma spectroscopy using high-purity germanium detectors (HPGes). It was shown that the level of contamination with radioactive impurities does not increase during the remelting of titanium sponge and mechanical processing. We examined titanium alloy samples obtained at different stages of titanium production, namely an electrode compaction, a vacuum arc remelting with a consumable electrode, and a cold rolling of titanium sheets. We found out that all doped samples that were studied would be a source of uranium and thorium contamination in the final titanium alloys. It has been established that the only product allowed obtaining ultra-low-background titanium was the commercial VT1-00 alloy, which is manufactured without master alloys addition. The master alloys in the titanium production process were found cause U/Th contamination. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
39. Low-Background Method of Isotope Markers for Measuring the Efficiency of Intercalation of Graphite by Potassium Atoms
- Author
-
Ahmatov, Z. A., Gangapshev, A. M., Romanenko, V. S., Khokonov, A. Kh., and Kuzminov, V. V.
- Published
- 2018
- Full Text
- View/download PDF
40. Search for Variations of 213Ро Half-Life
- Author
-
Alexeev, E. N., Gavrilyuk, Yu. M., Gangapshev, A. M., Gezhaev, A. M., Kazalov, V. V., Kuzminov, V. V., Panasenko, S. I., and Ratkevich, S. S.
- Published
- 2018
- Full Text
- View/download PDF
41. Results of In-Depth Analysis of Data Obtained in the Experimental Search for 2K(2ν)-Capture in 78Kr
- Author
-
Gavrilyuk, Yu. M., Gangapshev, A. M., Kazalov, V. V., Kuzminov, V. V., Panasenko, S. I., Ratkevich, S. S., Tekueva, D. A., and Yakimenko, S. P.
- Published
- 2018
- Full Text
- View/download PDF
42. New Constraints on the Axion–Photon Coupling Constant for Solar Axions
- Author
-
Gavrilyuk, Yu. M., Gangapshev, A. N., Derbin, A. V., Drachnev, I. S., Kazalov, V. V., Kobychev, V. V., Kuzminov, V. V., Muratova, V. N., Panasenko, S. I., Ratkevich, S. S., Tekueva, D. A., Unzhakov, E. V., and Yakimenko, S. P.
- Published
- 2018
- Full Text
- View/download PDF
43. Flux modulations seen by the muon veto of the Gerda experiment
- Author
-
collaboration, GERDA, Agostini, M., Allardt, M., Bakalyarov, A.M., Balata, M., Barabanov, I., Barros, N., Baudis, L., Bauer, C., Becerici-Schmidt, N., Bellotti, E., Belogurov, S., Belyaev, S.T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., D’Andrea, V., Demidova, E.V., di Vacri, A., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Grabmayr, P., Gurentsov, V., Gusev, K., Hegai, A., Heisel, M., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L.V., Ioannucci, L., Janicsk’o Cs’athy, J., Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I.V., Kirsch, A., Klimenko, A., Knapp, M., Knöpfle, K.T., Kochetov, O., Kornoukhov, V.N., Kuzminov, V.V., Laubenstein, M., Lazzaro, A., Lebedev, V.I., Lehnert, B., Liao, H.Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Misiaszek, M., Moseev, P., Nemchenok, I., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Riboldi, S., Ritter, F., Rumyantseva, N., Sada, C., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schreiner, J., Schütz, A.-K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Stepaniuk, M., Strecker, H., Vanhoefer, L., Vasenko, A.A., Veresnikova, A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wiesinger, C., Wilsenach, H., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S.V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Published
- 2016
- Full Text
- View/download PDF
44. Search of Neutrinoless Double Beta Decay with the GERDA Experiment
- Author
-
Agostini, M., Allardt, M., Bakalyarov, A.M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Becerici-Schmidt, N., Bellotti, E., Belogurov, S., Belyaev, S.T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Budjáš, D., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E.V., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Gooch, C., Gotti, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hampel, W., Hegai, A., Heisel, M., Hemmer, S., Heusser, G., Hoffmann, W., Hult, M., Inzhechik, L.V., Ioannucci, L., Janicksó Csáthy, J., Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I.V., Kirsch, A., Klimenko, A., Knöpfle, K.T., Kochetov, O., Kornoukhov, V.N., Kuzminov, V.V., Laubenstein, M., Lazzaro, A., Lebedev, V.I., Lehnert, B., Liao, H.Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Marissens, G., Medinaceli, E., Misiaszek, M., Moseev, P., Nemchenok, I., Nisi, S., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pessina, G., Pullia, A., Reissfelder, M., Riboldi, S., Rumyantseva, N., Sada, C., Salathe, M., Schmitt, C., Schneider, B., Schreiner, J., Schulz, O., Schwingenheuer, B., Schönert, S., Seitz, H., Selivalenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Stepaniuk, M., Strecker, H., Ur, C.A., Vanhoefer, L., Vasenko, A.A., Veresnikova, A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wiesinger, C., Wilsenach, H., Wojcik, M., Yanovich, E., Zavarise, P., Zhitnikov, I., Zhukov, S.V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Published
- 2016
- Full Text
- View/download PDF
45. Characterization of 30 76Ge enriched Broad Energy Ge detectors for GERDA Phase II
- Author
-
Agostini, M., Bakalyarov, A. M., Andreotti, E., Balata, M., Barabanov, I., Baudis, L., Barros, N., Bauer, C., Bellotti, E., Belogurov, S., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Budjáš, D., Caldwell, A., Cattadori, C., Chernogorov, A., D’Andrea, V., Demidova, E. V., Di Marco, N., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Freund, K., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hiller, R., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lehnert, B., Liao, Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Marissens, G., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Ransom, C., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schütz, A.-K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Published
- 2019
- Full Text
- View/download PDF
46. First results from the AMoRE-Pilot neutrinoless double beta decay experiment
- Author
-
Alenkov, V., Bae, H. W., Beyer, J., Boiko, R. S., Boonin, K., Buzanov, O., Chanthima, N., Cheoun, M. K., Chernyak, D. M., Choe, J. S., Choi, S., Danevich, F. A., Djamal, M., Drung, D., Enss, C., Fleischmann, A., Gangapshev, A. M., Gastaldo, L., Gavriljuk, Yu. M., Gezhaev, A. M., Grigoryeva, V. D., Gurentsov, V. I., Gylova, O., Ha, C., Ha, D. H., Ha, E. J., Hahn, I. S., Jang, C. H., Jeon, E. J., Jeon, J. A., Jo, H. S., Kaewkhao, J., Kang, C. S., Kang, S. J., Kang, W. G., Kazalov, V. V., Kempf, S., Khan, A., Khan, S., Kim, D. Y., Kim, G. W., Kim, H. B., Kim, H. J., Kim, H. L., Kim, H. S., Kim , I., Kim, S. C., Kim, S. G., Kim, S. K., Kim, S. R., Kim, W. T., Kim, Y. D., Kim, Y. H., Kirdsiri, K., Ko, Y. J., Kobychev, V. V., Kornoukhov, V., Kuzminov, V. V., Kwon, D. H., Lee, C., Lee, E. K., Lee, H. J., Lee, H. S., Lee, J. S., Lee, J. Y., Lee, K. B., Lee, M. H., Lee, M. K., Lee, S. W., Lee, S. W., Lee, S. H., Leonard, D., Li, J., Li, J., Li, Y., Limkitjaroenporn, P., Makarov, E. P., Oh, S. Y., Oh, Y. M., Olsen, S. L., Pabitra, A., Panasenko, S. I., Pandey, I., Park, C. W., Park, H. K., Park, H. S., Park, K. S., Park, S. Y., Poda, D. V., Polischuk, O. G., Prihtiadi, H., Ra, S. J., Ratkevich, S. S., Rooh, G., Sari, M. B., Seo, K. M., Shin, J. W., Shin, K. A., Shlegel, V. N., Siyeon, K., So, J. H., Son, J. K., Srisittipokakun, N., Sujita, K., Tretyak, V. I., Wirawan, R., Woo, K. R., Yoon, Y. S., Yue, Q., and Zaman, S. U.
- Published
- 2019
- Full Text
- View/download PDF
47. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection
- Author
-
Gavrilyuk, Yu.M., Gangapshev, A.M., Gezhaev, A.M., Etezov, R.A., Kazalov, V.V., Kuzminov, V.V., Panasenko, S.I., Ratkevich, S.S., Tekueva, D.A., and Yakimenko, S.P.
- Published
- 2015
- Full Text
- View/download PDF
48. Limit on Neutrinoless Double Beta Decay of 76Ge by GERDA
- Author
-
Agostini, M., Allardt, M., Andreotti, E., Bakalyarov, A.M., Balata, M., Barabanov, I., Heider, M. Barabè, Barros, N., Baudis, L., Bauer, C., Becerici-Schmidt, N., Bellotti, E., Belogurov, S., Belyaev, S.T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Brudanin, V., Brugnera, R., Budjáš, D., Caldwell, A., Cattadori, C., Chernogorov, A., Cossavella, F., Demidova, E.V., Domula, A., Egorov, V., Falkenstein, R., Ferella, A., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Gotti, C., Grabmayr, P., Gurentsov, V., Gusev, K., Guthikonda, K.K., Hampel, W., Hegai, A., Heisel, M., Hemmer, S., Heusser, G., Hofmann, W., Hult, M., Inzhechik, L.V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kihm, T., Kirpichnikov, I.V., Kirsch, A., Klimenko, A., Knöpfle, K.T., Kochetov, O., Kornoukhov, V.N., Kuzminov, V.V., Laubenstein, M., Lazzaro, A., Lebedev, V.I., Lehnert, B., Liao, H.Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Machado, A.A., Macolino, C., Majorovits, B., Maneschg, W., Misiaszek, M., Nemchenok, I., Nisi, S., Shaughnessy, C.O’., Pandola, L., Pelczar, K., Pessina, G., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salathe, M., Schmitt, C., Schreiner, J., Schulz, O., Schwingenheuer, B., Schönert, S., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Strecker, H., Tarka, M., Ur, C.A., Vasenko, A.A., Volynets, O., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wojcik, M., Yanovich, E., Zavarise, P., Zhitnikov, I., Zhukov, S.V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Published
- 2015
- Full Text
- View/download PDF
49. Background-free search for neutrinoless double- decay of 76Ge with GERDA
- Author
-
Agostini, M., Allardt, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., DAndrea, V., Demidova, E. V., Di Marco, N., di Vacri, A., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmller, J., Hegai, A., Heisel, M., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L. V., Janicsk Csthy, J., Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneil, R., Knpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Liao, H. Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Salathe, M., Schmitt, C., Schneider, B., Schnert, S., Schreiner, J., Schulz, O., Schtz, A.-K., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Subjects
Physics research ,Neutrinos -- Research ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Many extensions of the Standard Model of particle physics explain the dominance of matter over antimatter in our Universe by neutrinos being their own antiparticles. This would imply the existence of neutrinoless double- decay, which is an extremely rare lepton-number-violating radioactive decay process whose detection requires the utmost background suppression. Among the programmes that aim to detect this decay, the GERDA Collaboration is searching for neutrinoless double- decay of [sup.76]Ge by operating bare detectors, made of germanium with an enriched [sup.76]Ge fraction, in liquid argon. After having completed Phase I of data taking, we have recently launched Phase II. Here we report that in GERDA Phase II we have achieved a background level of approximately 10[sup.3] counts keV[sup.1] kg[sup.1] yr[sup.1]. This implies that the experiment is background-free, even when increasing the exposure up to design level. This is achieved by use of an active veto system, superior germanium detector energy resolution and improved background recognition of our new detectors. No signal of neutrinoless double- decay was found when Phase I and Phase II data were combined, and we deduce a lower-limit half-life of 5.310[sup.25] years at the 90 per cent confidence level. Our half-life sensitivity of 4.010[sup.25] years is competitive with the best experiments that use a substantially larger isotope mass. The potential of an essentially background-free search for neutrinoless double- decay will facilitate a larger germanium experiment with sensitivity levels that will bring us closer to clarifying whether neutrinos are their own antiparticles., Author(s): The GERDA Collaboration; M. Agostini [1]; M. Allardt [2]; A. M. Bakalyarov [3]; M. Balata [1]; I. Barabanov [4]; L. Baudis [5]; C. Bauer [6]; E. Bellotti [7, 8]; [...]
- Published
- 2017
- Full Text
- View/download PDF
50. Search for two-neutrino 2K capture in 124Xe: the method and preliminary results
- Author
-
Gavrilyuk, Yu. M., Gangapshev, A. M., Kazalov, V. V., Kuzminov, V. V., Panasenko, S. I., Ratkevich, S. S., and Tekueva, D. A.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.