1. Incidence Matrices of Projective Planes and of Some Regular Bipartite Graphs of Girth 6 with Few Vertices
- Author
-
C. Balbuena, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III, and Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
- Subjects
Discrete mathematics ,Quadrats màgics ,Grafs, Teoria de ,Cages ,Geometria projectiva ,General Mathematics ,Order (ring theory) ,Girth (graph theory) ,Cartesian product ,Magic squares ,Combinatorics ,Projective planes ,symbols.namesake ,symbols ,Bipartite graph ,Regular graph ,Projective plane ,Prime power ,Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs [Àrees temàtiques de la UPC] ,Bipartite graphs ,Mathematics ,Incidence (geometry) - Abstract
Let $q$ be a prime power and $r=0,1\ldots, q-3$. Using the Latin squares obtained by multiplying each entry of the addition table of the Galois field of order $q$ by an element distinct from zero, we obtain the incidence matrices of projective planes and the incidence matrices of $(q-r)$-regular bipartite graphs of girth 6 and $q^2-rq-1$ vertices in each partite set. Moreover, in this work two Latin squares of order $q-1$ with entries belonging to $\{0,1,\ldots, q\}$, not necessarily the same, are defined to be quasi row-disjoint if and only if the Cartesian product of any two rows contains at most one pair $(x,x)$ with $x\ne 0$. Using these quasi row-disjoint Latin squares we find $(q-1)$-regular bipartite graphs of girth 6 with $q^2-q-2$ vertices in each partite set. Some of these graphs have the smallest number of vertices known so far among the regular graphs with girth 6.
- Published
- 2008
- Full Text
- View/download PDF