5 results on '"Godinez, Ricardo"'
Search Results
2. Gene duplication and fragmentation in the zebra finch major histocompatibility complex
- Author
-
Burt David W, Kotkiewicz Holly, Godinez Ricardo, Westerdahl Helena, Völker Martin, Ekblom Robert, Balakrishnan Christopher N, Graves Tina, Griffin Darren K, Warren Wesley C, and Edwards Scott V
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Abstract Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages.
- Published
- 2010
- Full Text
- View/download PDF
3. Genomic legacy of the African cheetah, Acinonyx jubatus.
- Author
-
Dobrynin, Pavel, Shiping Liu, Tamazian, Gaik, Zijun Xiong, Yurchenko, Andrey A., Krasheninnikova, Ksenia, Kliver, Sergey, Schmidt-Küntzel, Anne, Koepfli, Klaus-Peter, Johnson, Warren, Kuderna, Lukas F. K., García-Pérez, Raquel, de Manuel, Marc, Godinez, Ricardo, Komissarov, Aleksey, Makunin, Alexey, Brukhin, Vladimir, Weilin Qiu, Long Zhou, and Fang Li
- Published
- 2015
- Full Text
- View/download PDF
4. Comparative Genome Analyses Reveal Distinct Structure in the Saltwater Crocodile MHC.
- Author
-
Jaratlerdsiri, Weerachai, Deakin, Janine, Godinez, Ricardo M., Shan, Xueyan, Peterson, Daniel G., Marthey, Sylvain, Lyons, Eric, McCarthy, Fiona M., Isberg, Sally R., Higgins, Damien P., Chong, Amanda Y., John, John St, Glenn, Travis C., Ray, David A., and Gongora, Jaime
- Subjects
CROCODYLUS porosus ,MAJOR histocompatibility complex genetics ,MAMMAL genomes ,CLASSIFICATION of mammals ,MAMMAL genes ,ARTIFICIAL chromosomes - Abstract
The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2–6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
5. Gene duplication and fragmentation in the zebrafinch major histocompatibility complex.
- Author
-
Balakrishnan, Christopher N., Ekblom, Robert, Völker, Martin, Westerdahl, Helena, Godinez, Ricardo, Kotkiewicz, Holly, Burt, David W., Graves, Tina, Griffin, Darren K., Warren, Wesley C., and Edwards, Scott V.
- Subjects
ZEBRA finch ,BACTERIAL artificial chromosomes ,MAJOR histocompatibility complex ,POLYMORPHISM (Zoology) ,CHICKENS ,TAENIOPYGIA - Abstract
Background: Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results: The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion: The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.