1. Machine learning on alignment features for parent-of-origin classification of simulated hybrid RNA-seq
- Author
-
Jason R. Miller and Donald A. Adjeroh
- Subjects
Machine learning ,RNA-seq ,Allele-specific expression ,Sequence alignment ,Computer applications to medicine. Medical informatics ,R858-859.7 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background Parent-of-origin allele-specific gene expression (ASE) can be detected in interspecies hybrids by virtue of RNA sequence variants between the parental haplotypes. ASE is detectable by differential expression analysis (DEA) applied to the counts of RNA-seq read pairs aligned to parental references, but aligners do not always choose the correct parental reference. Results We used public data for species that are known to hybridize. We measured our ability to assign RNA-seq read pairs to their proper transcriptome or genome references. We tested software packages that assign each read pair to a reference position and found that they often favored the incorrect species reference. To address this problem, we introduce a post process that extracts alignment features and trains a random forest classifier to choose the better alignment. On each simulated hybrid dataset tested, our machine-learning post-processor achieved higher accuracy than the aligner by itself at choosing the correct parent-of-origin per RNA-seq read pair. Conclusions For the parent-of-origin classification of RNA-seq, machine learning can improve the accuracy of alignment-based methods. This approach could be useful for enhancing ASE detection in interspecies hybrids, though RNA-seq from real hybrids may present challenges not captured by our simulations. We believe this is the first application of machine learning to this problem domain.
- Published
- 2024
- Full Text
- View/download PDF