10 results on '"Kafri, Dvir"'
Search Results
2. Measurement-induced entanglement and teleportation on a noisy quantum processor
- Author
-
Hoke, Jesse C., Ippoliti, Matteo, Rosenberg, Eliott, Abanin, Dmitry, Acharya, Rajeev, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Bardin, Joseph C., Bengtsson, Andreas, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Chen, Zijun, Chiaro, Ben, Chik, Desmond, Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Dau, Alejandro Grajales, Debroy, Dripto M., Barba, Alexander Del Toro, Demura, Sean, Di Paolo, Augustin, Drozdov, Ilya K., Dunsworth, Andrew, Eppens, Daniel, Erickson, Catherine, Farhi, Edward, Fatemi, Reza, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Giang, William, Gidney, Craig, Gilboa, Dar, Giustina, Marissa, Gosula, Raja, Gross, Jonathan A., Habegger, Steve, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heu, Paula, Hoffmann, Markus R., Hong, Sabrina, Huang, Trent, Huff, Ashley, Huggins, William J., Isakov, Sergei V., Iveland, Justin, Jeffrey, Evan, Jones, Cody, Juhas, Pavol, Kafri, Dvir, Kechedzhi, Kostyantyn, Khattar, Tanuj, Khezri, Mostafa, Kieferová, Mária, Kim, Seon, Kitaev, Alexei, Klimov, Paul V., Klots, Andrey R., Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Landhuis, David, Laptev, Pavel, Lau, Kim-Ming, Laws, Lily, Lee, Joonho, Lee, Kenny W., Lensky, Yuri D., Lester, Brian J., Lill, Alexander T., Liu, Wayne, Locharla, Aditya, Martin, Orion, McClean, Jarrod R., McEwen, Matt, Miao, Kevin C., Mieszala, Amanda, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Mruczkiewicz, Wojciech, Neeley, Matthew, Neill, Charles, Nersisyan, Ani, Newman, Michael, Ng, Jiun H., Nguyen, Anthony, Nguyen, Murray, Niu, Murphy Yuezhen, O'Brien, Tom E., Omonije, Seun, Opremcak, Alex, Petukhov, Andre, Potter, Rebecca, Pryadko, Leonid P., Quintana, Chris, Rocque, Charles, Rubin, Nicholas C., Saei, Negar, Sank, Daniel, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vlad, Skruzny, Jindra, Smith, W. Clarke, Somma, Rolando D., Sterling, George, Strain, Douglas, Szalay, Marco, Torres, Alfredo, Vidal, Guifre, Villalonga, Benjamin, Heidweiller, Catherine Vollgraff, White, Ted, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie., Yeh, Ping, Yoo, Juhwan, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobrist, Nicholas, Neven, Harmut, Babbush, Ryan, Bacon, Dave, Boixo, Sergio, Hilton, Jeremy, Lucero, Erik, Megrant, Anthony, Kelly, Julian, Chen, Yu, Smelyanskiy, Vadim, Mi, Xiao, Khemani, Vedika, and Roushan, Pedram
- Subjects
Quantum Physics ,Condensed Matter - Statistical Mechanics ,High Energy Physics - Theory - Abstract
Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
- Published
- 2023
- Full Text
- View/download PDF
3. Overcoming leakage in scalable quantum error correction
- Author
-
Miao, Kevin C., McEwen, Matt, Atalaya, Juan, Kafri, Dvir, Pryadko, Leonid P., Bengtsson, Andreas, Opremcak, Alex, Satzinger, Kevin J., Chen, Zijun, Klimov, Paul V., Quintana, Chris, Acharya, Rajeev, Anderson, Kyle, Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Bardin, Joseph C., Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Campero, Juan, Chiaro, Ben, Collins, Roberto, Conner, Paul, Crook, Alexander L., Curtin, Ben, Debroy, Dripto M., Demura, Sean, Dunsworth, Andrew, Erickson, Catherine, Fatemi, Reza, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Garcia, Gonzalo, Giang, William, Gidney, Craig, Giustina, Marissa, Gosula, Raja, Dau, Alejandro Grajales, Gross, Jonathan A., Hamilton, Michael C., Harrington, Sean D., Heu, Paula, Hilton, Jeremy, Hoffmann, Markus R., Hong, Sabrina, Huang, Trent, Huff, Ashley, Iveland, Justin, Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Kelly, Julian, Kim, Seon, Kostritsa, Fedor, Kreikebaum, John Mark, Landhuis, David, Laptev, Pavel, Laws, Lily, Lee, Kenny, Lester, Brian J., Lill, Alexander T., Liu, Wayne, Locharla, Aditya, Lucero, Erik, Martin, Steven, Megrant, Anthony, Mi, Xiao, Montazeri, Shirin, Morvan, Alexis, Naaman, Ofer, Neeley, Matthew, Neill, Charles, Nersisyan, Ani, Newman, Michael, Ng, Jiun How, Nguyen, Anthony, Nguyen, Murray, Potter, Rebecca, Rocque, Charles, Roushan, Pedram, Sankaragomathi, Kannan, Schuster, Christopher, Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Skruzny, Jindra, Smith, W. Clarke, Sterling, George, Szalay, Marco, Thor, Douglas, Torres, Alfredo, White, Theodore, Woo, Bryan W. K., Yao, Z. Jamie, Yeh, Ping, Yoo, Juhwan, Young, Grayson, Zalcman, Adam, Zhu, Ningfeng, Zobrist, Nicholas, Neven, Hartmut, Smelyanskiy, Vadim, Petukhov, Andre, Korotkov, Alexander N., Sank, Daniel, and Chen, Yu
- Subjects
Quantum Physics - Abstract
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC). In a QEC circuit, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of logical error with scale, challenging the feasibility of QEC as a path towards fault-tolerant quantum computation. Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 \times 10^{-3}$ throughout the entire device. The leakage removal process itself efficiently returns leakage population back to the computational basis, and adding it to a code circuit prevents leakage from inducing correlated error across cycles, restoring a fundamental assumption of QEC. With this demonstration that leakage can be contained, we resolve a key challenge for practical QEC at scale., Comment: Main text: 7 pages, 5 figures
- Published
- 2022
- Full Text
- View/download PDF
4. Noise-resilient Edge Modes on a Chain of Superconducting Qubits
- Author
-
Mi, Xiao, Sonner, Michael, Niu, Murphy Yuezhen, Lee, Kenneth W., Foxen, Brooks, Acharya, Rajeev, Aleiner, Igor, Andersen, Trond I., Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Babbush, Ryan, Bacon, Dave, Bardin, Joseph C., Basso, Joao, Bengtsson, Andreas, Bortoli, Gina, Bourassa, Alexandre, Brill, Leon, Broughton, Michael, Buckley, Bob B., Buell, David A., Burkett, Brian, Bushnell, Nicholas, Chen, Zijun, Chiaro, Benjamin, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Debroy, Dripto M., Demura, Sean, Dunsworth, Andrew, Eppens, Daniel, Erickson, Catherine, Faoro, Lara, Farhi, Edward, Fatemi, Reza, Flores, Leslie, Forati, Ebrahim, Fowler, Austin G., Giang, William, Gidney, Craig, Gilboa, Dar, Giustina, Marissa, Dau, Alejandro Grajales, Gross, Jonathan A., Habegger, Steve, Harrigan, Matthew P., Hilton, Jeremy, Hoffmann, Markus, Hong, Sabrina, Huang, Trent, Huff, Ashley, Huggins, William J., Ioffe, Lev B., Isakov, Sergei V., Iveland, Justin, Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Kafri, Dvir, Kechedzhi, Kostyantyn, Khattar, Tanuj, Kim, Seon, Kitaev, Alexei, Klimov, Paul V., Klots, Andrey R., Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, J. M., Landhuis, David, Laptev, Pavel, Lau, Kim-Ming, Lee, Joonho, Laws, Lily, Liu, Wayne, Locharla, Aditya, Lucero, Erik, Martin, Orion, McClean, Jarrod R., McEwen, Matt, Costa, Bernardo Meurer, Miao, Kevin C., Mohseni, Masoud, Montazeri, Shirin, Morvan, Alexis, Mount, Emily, Mruczkiewicz, Wojciech, Naaman, Ofer, Neeley, Matthew, Neill, Charles, Newman, Michael, O'Brien, Thomas E., Opremcak, Alex, Petukhov, Andre, Potter, Rebecca, Quintana, Chris, Rubin, Nicholas C., Saei, Negar, Sank, Daniel, Sankaragomathi, Kannan, Satzinger, Kevin J., Schuster, Christopher, Shearn, Michael J., Shvarts, Vladimir, Strain, Doug, Su, Yuan, Szalay, Marco, Vidal, Guifre, Villalonga, Benjamin, Vollgraff-Heidweiller, Catherine, White, Theodore, Yao, Z. Jamie, Yeh, Ping, Yoo, Juhwan, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Neven, Hartmut, Boixo, Sergio, Megrant, Anthony, Chen, Yu, Kelly, Julian, Smelyanskiy, Vadim, Abanin, Dmitry A., and Roushan, Pedram
- Subjects
Quantum Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Other Condensed Matter - Abstract
Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, we find that any multi-qubit Pauli operator overlapping with the MEMs exhibits a uniform late-time decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This characteristic allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Furthermore, the MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism. Our work elucidates the complex interplay between noise and symmetry-protected edge modes in a solid-state environment.
- Published
- 2022
- Full Text
- View/download PDF
5. Information Scrambling in Computationally Complex Quantum Circuits
- Author
-
Mi, Xiao, Roushan, Pedram, Quintana, Chris, Mandra, Salvatore, Marshall, Jeffrey, Neill, Charles, Arute, Frank, Arya, Kunal, Atalaya, Juan, Babbush, Ryan, Bardin, Joseph C., Barends, Rami, Bengtsson, Andreas, Boixo, Sergio, Bourassa, Alexandre, Broughton, Michael, Buckley, Bob B., Buell, David A., Burkett, Brian, Bushnell, Nicholas, Chen, Zijun, Chiaro, Benjamin, Collins, Roberto, Courtney, William, Demura, Sean, Derk, Alan R., Dunsworth, Andrew, Eppens, Daniel, Erickson, Catherine, Farhi, Edward, Fowler, Austin G., Foxen, Brooks, Gidney, Craig, Giustina, Marissa, Gross, Jonathan A., Harrigan, Matthew P., Harrington, Sean D., Hilton, Jeremy, Ho, Alan, Hong, Sabrina, Huang, Trent, Huggins, William J., Ioffe, L. B., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Kafri, Dvir, Kelly, Julian, Kim, Seon, Kitaev, Alexei, Klimov, Paul V., Korotkov, Alexander N., Kostritsa, Fedor, Landhuis, David, Laptev, Pavel, Lucero, Erik, Martin, Orion, McClean, Jarrod R., McCourt, Trevor, McEwen, Matt, Megrant, Anthony, Miao, Kevin C., Mohseni, Masoud, Mruczkiewicz, Wojciech, Mutus, Josh, Naaman, Ofer, Neeley, Matthew, Newman, Michael, Niu, Murphy Yuezhen, O'Brien, Thomas E., Opremcak, Alex, Ostby, Eric, Pato, Balint, Petukhov, Andre, Redd, Nicholas, Rubin, Nicholas C., Sank, Daniel, Satzinger, Kevin J., Shvarts, Vladimir, Strain, Doug, Szalay, Marco, Trevithick, Matthew D., Villalonga, Benjamin, White, Theodore, Yao, Z. Jamie, Yeh, Ping, Zalcman, Adam, Neven, Hartmut, Aleiner, Igor, Kechedzhi, Kostyantyn, Smelyanskiy, Vadim, and Chen, Yu
- Subjects
Quantum Physics ,Condensed Matter - Strongly Correlated Electrons ,High Energy Physics - Theory - Abstract
Interaction in quantum systems can spread initially localized quantum information into the many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is the key to resolving various conundrums in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor. We engineer quantum circuits that distinguish the two mechanisms associated with quantum scrambling, operator spreading and operator entanglement, and experimentally observe their respective signatures. We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate. These results open the path to studying complex and practically relevant physical observables with near-term quantum processors.
- Published
- 2021
- Full Text
- View/download PDF
6. Hartree-Fock on a superconducting qubit quantum computer
- Author
-
Arute, Frank, Arya, Kunal, Babbush, Ryan, Bacon, Dave, Bardin, Joseph C., Barends, Rami, Boixo, Sergio, Broughton, Michael, Buckley, Bob B., Buell, David A., Burkett, Brian, Bushnell, Nicholas, Chen, Yu, Chen, Zijun, Chiaro, Benjamin, Collins, Roberto, Courtney, William, Demura, Sean, Dunsworth, Andrew, Eppens, Daniel, Farhi, Edward, Fowler, Austin, Foxen, Brooks, Gidney, Craig, Giustina, Marissa, Graff, Rob, Habegger, Steve, Harrigan, Matthew P., Ho, Alan, Hong, Sabrina, Huang, Trent, Huggins, William J., Ioffe, Lev, Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Kafri, Dvir, Kechedzhi, Kostyantyn, Kelly, Julian, Kim, Seon, Klimov, Paul V., Korotkov, Alexander, Kostritsa, Fedor, Landhuis, David, Laptev, Pavel, Lindmark, Mike, Lucero, Erik, Martin, Orion, Martinis, John M., McClean, Jarrod R., McEwen, Matt, Megrant, Anthony, Mi, Xiao, Mohseni, Masoud, Mruczkiewicz, Wojciech, Mutus, Josh, Naaman, Ofer, Neeley, Matthew, Neill, Charles, Neven, Hartmut, Niu, Murphy Yuezhen, O'Brien, Thomas E., Ostby, Eric, Petukhov, Andre, Putterman, Harald, Quintana, Chris, Roushan, Pedram, Rubin, Nicholas C., Sank, Daniel, Satzinger, Kevin J., Smelyanskiy, Vadim, Strain, Doug, Sung, Kevin J., Szalay, Marco, Takeshita, Tyler Y., Vainsencher, Amit, White, Theodore, Wiebe, Nathan, Yao, Z. Jamie, Yeh, Ping, and Zalcman, Adam
- Subjects
Quantum Physics ,Physics - Chemical Physics - Abstract
As the search continues for useful applications of noisy intermediate scale quantum devices, variational simulations of fermionic systems remain one of the most promising directions. Here, we perform a series of quantum simulations of chemistry the largest of which involved a dozen qubits, 78 two-qubit gates, and 114 one-qubit gates. We model the binding energy of ${\rm H}_6$, ${\rm H}_8$, ${\rm H}_{10}$ and ${\rm H}_{12}$ chains as well as the isomerization of diazene. We also demonstrate error-mitigation strategies based on $N$-representability which dramatically improve the effective fidelity of our experiments. Our parameterized ansatz circuits realize the Givens rotation approach to non-interacting fermion evolution, which we variationally optimize to prepare the Hartree-Fock wavefunction. This ubiquitous algorithmic primitive corresponds to a rotation of the orbital basis and is required by many proposals for correlated simulations of molecules and Hubbard models. Because non-interacting fermion evolutions are classically tractable to simulate, yet still generate highly entangled states over the computational basis, we use these experiments to benchmark the performance of our hardware while establishing a foundation for scaling up more complex correlated quantum simulations of chemistry., Comment: updated link to experiment code, new version containing expanded data sets and corrected figure label
- Published
- 2020
- Full Text
- View/download PDF
7. Time-crystalline eigenstate order on a quantum processor
- Author
-
Mi, Xiao, Ippoliti, Matteo, Quintana, Chris, Greene, Ami, Chen, Zijun, Gross, Jonathan, Arute, Frank, Arya, Kunal, Atalaya, Juan, Babbush, Ryan, Bardin, Joseph C., Basso, Joao, Bengtsson, Andreas, Bilmes, Alexander, Bourassa, Alexandre, Brill, Leon, Broughton, Michael, Buckley, Bob B., Buell, David A., Burkett, Brian, Bushnell, Nicholas, Chiaro, Benjamin, Collins, Roberto, Courtney, William, Debroy, Dripto, Demura, Sean, Derk, Alan R., Dunsworth, Andrew, Eppens, Daniel, Erickson, Catherine, Farhi, Edward, Fowler, Austin G., Foxen, Brooks, Gidney, Craig, Giustina, Marissa, Harrigan, Matthew P., Harrington, Sean D., Hilton, Jeremy, Ho, Alan, Hong, Sabrina, Huang, Trent, Huff, Ashley, Huggins, William J., Ioffe, L. B., Isakov, Sergei V., Iveland, Justin, Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Kafri, Dvir, Khattar, Tanuj, Kim, Seon, Kitaev, Alexei, Klimov, Paul V., Korotkov, Alexander N., Kostritsa, Fedor, Landhuis, David, Laptev, Pavel, Lee, Joonho, Lee, Kenny, Locharla, Aditya, Lucero, Erik, Martin, Orion, McClean, Jarrod R., McCourt, Trevor, McEwen, Matt, Miao, Kevin C., Mohseni, Masoud, Montazeri, Shirin, Mruczkiewicz, Wojciech, Naaman, Ofer, Neeley, Matthew, Neill, Charles, Newman, Michael, Niu, Murphy Yuezhen, O’Brien, Thomas E., Opremcak, Alex, Ostby, Eric, Pato, Balint, Petukhov, Andre, Rubin, Nicholas C., Sank, Daniel, Satzinger, Kevin J., Shvarts, Vladimir, Su, Yuan, Strain, Doug, Szalay, Marco, Trevithick, Matthew D., Villalonga, Benjamin, White, Theodore, Yao, Z. Jamie, Yeh, Ping, Yoo, Juhwan, Zalcman, Adam, Neven, Hartmut, Boixo, Sergio, Smelyanskiy, Vadim, Megrant, Anthony, Kelly, Julian, Chen, Yu, Sondhi, S. L., Moessner, Roderich, Kechedzhi, Kostyantyn, Khemani, Vedika, and Roushan, Pedram
- Published
- 2022
- Full Text
- View/download PDF
8. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor
- Author
-
Harrigan, Matthew P., Sung, Kevin J., Neeley, Matthew, Satzinger, Kevin J., Arute, Frank, Arya, Kunal, Atalaya, Juan, Bardin, Joseph C., Barends, Rami, Boixo, Sergio, Broughton, Michael, Buckley, Bob B., Buell, David A., Burkett, Brian, Bushnell, Nicholas, Chen, Yu, Chen, Zijun, Ben Chiaro, Collins, Roberto, Courtney, William, Demura, Sean, Dunsworth, Andrew, Eppens, Daniel, Fowler, Austin, Foxen, Brooks, Gidney, Craig, Giustina, Marissa, Graff, Rob, Habegger, Steve, Ho, Alan, Hong, Sabrina, Huang, Trent, Ioffe, L. B., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Kafri, Dvir, Kechedzhi, Kostyantyn, Kelly, Julian, Kim, Seon, Klimov, Paul V., Korotkov, Alexander N., Kostritsa, Fedor, Landhuis, David, Laptev, Pavel, Lindmark, Mike, Leib, Martin, Martin, Orion, Martinis, John M., McClean, Jarrod R., McEwen, Matt, Megrant, Anthony, Mi, Xiao, Mohseni, Masoud, Mruczkiewicz, Wojciech, Mutus, Josh, Naaman, Ofer, Neill, Charles, Neukart, Florian, Niu, Murphy Yuezhen, O’Brien, Thomas E., O’Gorman, Bryan, Ostby, Eric, Petukhov, Andre, Putterman, Harald, Quintana, Chris, Roushan, Pedram, Rubin, Nicholas C., Sank, Daniel, Skolik, Andrea, Smelyanskiy, Vadim, Strain, Doug, Streif, Michael, Szalay, Marco, Vainsencher, Amit, White, Theodore, Yao, Z. Jamie, Yeh, Ping, Zalcman, Adam, Zhou, Leo, Neven, Hartmut, Bacon, Dave, Lucero, Erik, Farhi, Edward, and Babbush, Ryan
- Published
- 2021
- Full Text
- View/download PDF
9. Quantum supremacy using a programmable superconducting processor
- Author
-
Arute, Frank, Arya, Kunal, Babbush, Ryan, Bacon, Dave, Bardin, Joseph C., Barends, Rami, Biswas, Rupak, Boixo, Sergio, Brandao, Fernando G. S. L., Buell, David A., Burkett, Brian, Chen, Yu, Chen, Zijun, Chiaro, Ben, Collins, Roberto, Courtney, William, Dunsworth, Andrew, Farhi, Edward, Foxen, Brooks, Fowler, Austin, Gidney, Craig, Giustina, Marissa, Graff, Rob, Guerin, Keith, Habegger, Steve, Harrigan, Matthew P., Hartmann, Michael J., Ho, Alan, Hoffmann, Markus, Huang, Trent, Humble, Travis S., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Kafri, Dvir, Kechedzhi, Kostyantyn, Kelly, Julian, Klimov, Paul V., Knysh, Sergey, Korotkov, Alexander, Kostritsa, Fedor, Landhuis, David, Lindmark, Mike, Lucero, Erik, Lyakh, Dmitry, Mandrà, Salvatore, McClean, Jarrod R., McEwen, Matthew, Megrant, Anthony, Mi, Xiao, Michielsen, Kristel, Mohseni, Masoud, Mutus, Josh, Naaman, Ofer, Neeley, Matthew, Neill, Charles, Niu, Murphy Yuezhen, Ostby, Eric, Petukhov, Andre, Platt, John C., Quintana, Chris, Rieffel, Eleanor G., Roushan, Pedram, Rubin, Nicholas C., Sank, Daniel, Satzinger, Kevin J., Smelyanskiy, Vadim, Sung, Kevin J., Trevithick, Matthew D., Vainsencher, Amit, Villalonga, Benjamin, White, Theodore, Yao, Z. Jamie, Yeh, Ping, Zalcman, Adam, Neven, Hartmut, and Martinis, John M.
- Published
- 2019
- Full Text
- View/download PDF
10. Exponential suppression of bit or phase errors with cyclic error correction.
- Author
-
Chen, Zijun, Satzinger, Kevin J., Atalaya, Juan, Korotkov, Alexander N., Dunsworth, Andrew, Sank, Daniel, Quintana, Chris, McEwen, Matt, Barends, Rami, Klimov, Paul V., Hong, Sabrina, Jones, Cody, Petukhov, Andre, Kafri, Dvir, Demura, Sean, Burkett, Brian, Gidney, Craig, Fowler, Austin G., Paler, Alexandru, and Putterman, Harald
- Abstract
Realizing the potential of quantum computing requires sufficiently low logical error rates1. Many applications call for error rates as low as 10
−15 (refs. 2–9), but state-of-the-art quantum platforms typically have physical error rates near 10−3 (refs. 10–14). Quantum error correction15–17 promises to bridge this divide by distributing quantum logical information across many physical qubits in such a way that errors can be detected and corrected. Errors on the encoded logical qubit state can be exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold and stable over the course of a computation. Here we implement one-dimensional repetition codes embedded in a two-dimensional grid of superconducting qubits that demonstrate exponential suppression of bit-flip or phase-flip errors, reducing logical error per round more than 100-fold when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analysing error correlations with high precision, allowing us to characterize error locality while performing quantum error correction. Finally, we perform error detection with a small logical qubit using the 2D surface code on the same device18,19 and show that the results from both one- and two-dimensional codes agree with numerical simulations that use a simple depolarizing error model. These experimental demonstrations provide a foundation for building a scalable fault-tolerant quantum computer with superconducting qubits.Repetition codes running many cycles of quantum error correction achieve exponential suppression of errors with increasing numbers of qubits. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.