11 results on '"Romel Somwar"'
Search Results
2. MEK inhibitor resistance in lung adenocarcinoma is associated with addiction to sustained ERK suppression
- Author
-
Dylan A. Farnsworth, Yusuke Inoue, Fraser D. Johnson, Georgia de Rappard-Yuswack, Daniel Lu, Rocky Shi, Lok In Josephine Ma, Marissa S. Mattar, Romel Somwar, Marc Ladanyi, Arun M. Unni, and William W. Lockwood
- Subjects
Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract MEK inhibitors (MEKi) have limited efficacy in KRAS mutant lung adenocarcinoma (LUAD) patients, and this is attributed to both intrinsic and adaptive mechanisms of drug resistance. While many studies have focused on the former, there remains a dearth of data regarding acquired resistance to MEKi in LUAD. We established trametinib-resistant KRAS mutant LUAD cells through dose escalation and performed targeted MSK-IMPACT sequencing to identify drivers of MEKi resistance. Comparing resistant cells to their sensitive counterparts revealed alteration of genes associated with trametinib response. We describe a state of “drug addiction” in resistant cases where cells are dependent on continuous culture in trametinib for survival. We show that dependence on ERK2 suppression underlies this phenomenon and that trametinib removal hyperactivates ERK, resulting in ER stress and apoptosis. Amplification of KRAS G12C occurs in drug-addicted cells and blocking mutant-specific activity with AMG 510 rescues the lethality associated with trametinib withdrawal. Furthermore, we show that increased KRASG12C expression is lethal to other KRAS mutant LUAD cells, consequential to ERK hyperactivation. Our study determines the drug-addicted phenotype in lung cancer is associated with KRAS amplification and demonstrates that toxic acquired genetic changes can develop de novo in the background of MAPK suppression with MEK inhibitors. We suggest that the presence of mutant KRAS amplification in patients may identify those that may benefit from a “drug holiday” to circumvent drug resistance. These findings demonstrate the toxic potential of hyperactive ERK signaling and highlight potential therapeutic opportunities in patients bearing KRAS mutations.
- Published
- 2022
- Full Text
- View/download PDF
3. Salt-Inducible Kinase 1 is a potential therapeutic target in Desmoplastic Small Round Cell Tumor
- Author
-
Alifiani Bonita Hartono, Hong-Jun Kang, Lawrence Shi, Whitney Phipps, Nathan Ungerleider, Alexandra Giardina, WeiPing Chen, Lee Spraggon, Romel Somwar, Krzysztof Moroz, David H. Drewry, Matthew E. Burow, Erik Flemington, Marc Ladanyi, and Sean Bong Lee
- Subjects
Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Desmoplastic Small Round Cell Tumor (DSRCT) is a rare and aggressive malignant cancer caused by a chromosomal translocation t(11;22)(p13;q12) that produces an oncogenic transcription factor, EWSR1-WT1. EWSR1-WT1 is essential for the initiation and progression of DSRCT. However, the precise mechanism by which EWSR1-WT1 drives DSRCT oncogenesis remains unresolved. Through our integrative gene expression analysis, we identified Salt Inducible Kinase 1 (SIK1) as a direct target of EWSR1-WT1. SIK1 as a member of the AMPK related kinase is involved in many biological processes. We showed that depletion of SIK1 causes inhibition of tumor cell growth, similar to the growth inhibition observed when EWSR1-WT1 is depleted. We further showed that silencing SIK1 leads to cessation of DNA replication in DSRCT cells and inhibition of tumor growth in vivo. Lastly, combined inhibition of SIK1 and CHEK1with small molecule inhibitors, YKL-05-099 and prexasertib, respectively, showed enhanced cytotoxicity in DSRCT cells compared to inhibition of either kinases alone. This work identified SIK1 as a new potential therapeutic target in DSRCT and the efficacy of SIK1 inhibition may be improved when combined with other intervention strategies.
- Published
- 2022
- Full Text
- View/download PDF
4. Desmoplastic small round cell tumor cancer stem cell-like cells resist chemotherapy but remain dependent on the EWSR1-WT1 oncoprotein
- Author
-
Justin W. Magrath, Hong-Jun Kang, Alifiani Hartono, Madelyn Espinosa-Cotton, Romel Somwar, Marc Ladanyi, Nai-Kong V. Cheung, and Sean B. Lee
- Subjects
DSRCT ,pediatric cancer ,cancer stem cells ,chemoresistance ,sarcoma ,Biology (General) ,QH301-705.5 - Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare and aggressive pediatric cancer driven by the EWSR1-WT1 fusion oncogene. Combinations of chemotherapy, radiation and surgery are not curative, and the 5-years survival rate is less than 25%. One potential explanation for refractoriness is the existence of a cancer stem cell (CSC) subpopulation able escape current treatment modalities. However, no study to-date has examined the role of CSCs in DSRCT or established in vitro culture conditions to model this subpopulation. In this study, we investigated the role of stemness markers in DSRCT survival and metastasis, finding that elevated levels of SOX2 and NANOG are associated with worse survival in sarcoma patients and are elevated in metastatic DSRCT tumors. We further develop the first in vitro DSRCT CSC model which forms tumorspheres, expresses increased levels of stemness markers (SOX2, NANOG, KLF4, and OCT4), and resists doxorubicin chemotherapy treatment. This model is an important addition to the DSRCT tool kit and will enable investigation of this critical DSRCT subpopulation. Despite lower sensitivity to chemotherapy, the DSRCT CSC model remained sensitive to knockdown of the EWSR1-WT1 fusion protein, suggesting that future therapies directed against this oncogenic driver have the potential to treat both DSRCT bulk tumor and CSCs.
- Published
- 2022
- Full Text
- View/download PDF
5. NTRK kinase domain mutations in cancer variably impact sensitivity to type I and type II inhibitors
- Author
-
Romel Somwar, Nicolle E. Hofmann, Bryan Smith, Igor Odintsov, Morana Vojnic, Irina Linkov, Ashley Tam, Inna Khodos, Marissa S. Mattar, Elisa de Stanchina, Daniel Flynn, Marc Ladanyi, Alexander Drilon, Ujwal Shinde, and Monika A. Davare
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Romel Somwar et al. find that cancer-causing NTRK gene fusions resistant to one form of inhibitor therapy can be resistant to other inhibitor types. Using molecular simulations, they show that some NTRK1 mutations resistant to the type I inhibitor larotrectinib are hypersensitive to the type II inhibitor altiratinib, potentially due to the introduction of a sulfur moiety in the kinase binding pocket.
- Published
- 2020
- Full Text
- View/download PDF
6. Characterization of a small molecule inhibitor of disulfide reductases that induces oxidative stress and lethality in lung cancer cells
- Author
-
Fraser D. Johnson, John Ferrarone, Alvin Liu, Christina Brandstädter, Ravi Munuganti, Dylan A. Farnsworth, Daniel Lu, Jennifer Luu, Tianna Sihota, Sophie Jansen, Amy Nagelberg, Rocky Shi, Giovanni C. Forcina, Xu Zhang, Grace S.W. Cheng, Sandra E. Spencer Miko, Georgia de Rappard-Yuswack, Poul H. Sorensen, Scott J. Dixon, Udayan Guha, Katja Becker, Hakim Djaballah, Romel Somwar, Harold Varmus, Gregg B. Morin, and William W. Lockwood
- Subjects
lung cancer ,redox homeostasis ,reactive oxygen species ,small molecule screen ,thioredoxin ,glutathione ,Biology (General) ,QH301-705.5 - Abstract
Summary: Phenotype-based screening can identify small molecules that elicit a desired cellular response, but additional approaches are required to characterize their targets and mechanisms of action. Here, we show that a compound termed LCS3, which selectively impairs the growth of human lung adenocarcinoma (LUAD) cells, induces oxidative stress. To identify the target that mediates this effect, we use thermal proteome profiling (TPP) and uncover the disulfide reductases GSR and TXNRD1 as targets. We confirm through enzymatic assays that LCS3 inhibits disulfide reductase activity through a reversible, uncompetitive mechanism. Further, we demonstrate that LCS3-sensitive LUAD cells are sensitive to the synergistic inhibition of glutathione and thioredoxin pathways. Lastly, a genome-wide CRISPR knockout screen identifies NQO1 loss as a mechanism of LCS3 resistance. This work highlights the ability of TPP to uncover targets of small molecules identified by high-throughput screens and demonstrates the potential therapeutic utility of inhibiting disulfide reductases in LUAD.
- Published
- 2022
- Full Text
- View/download PDF
7. Novel patient-derived models of desmoplastic small round cell tumor confirm a targetable dependency on ERBB signaling
- Author
-
Roger S. Smith, Igor Odintsov, Zebing Liu, Allan Jo-Weng Lui, Takuo Hayashi, Morana Vojnic, Yoshiyuki Suehara, Lukas Delasos, Marissa S. Mattar, Julija Hmeljak, Hillary A. Ramirez, Melissa Shaw, Gabrielle Bui, Alifiani B. Hartono, Eric Gladstone, Siddharth Kunte, Heather Magnan, Inna Khodos, Elisa De Stanchina, Michael P. La Quaglia, Jinjuan Yao, Marick Laé, Sean B. Lee, Lee Spraggon, Christine A. Pratilas, Marc Ladanyi, and Romel Somwar
- Subjects
ewsr1-wt1 ,dsrct pdx ,egfr ,sarcoma proteomics ,Medicine ,Pathology ,RB1-214 - Abstract
Desmoplastic small round cell tumor (DSRCT) is characterized by the t(11;22)(p13;q12) translocation, which fuses the transcriptional regulatory domain of EWSR1 with the DNA-binding domain of WT1, resulting in the oncogenic EWSR1-WT1 fusion protein. The paucity of DSRCT disease models has hampered preclinical therapeutic studies on this aggressive cancer. Here, we developed preclinical disease models and mined DSRCT expression profiles to identify genetic vulnerabilities that could be leveraged for new therapies. We describe four DSRCT cell lines and one patient-derived xenograft model. Transcriptomic, proteomic and biochemical profiling showed evidence of activation of the ERBB pathway. Ectopic expression of EWSR1-WT1 resulted in upregulation of ERRB family ligands. Treatment of DSRCT cell lines with ERBB ligands resulted in activation of EGFR, ERBB2, ERK1/2 and AKT, and stimulation of cell growth. Antagonizing EGFR function with shRNAs, small-molecule inhibitors (afatinib, neratinib) or an anti-EGFR antibody (cetuximab) inhibited proliferation of DSRCT cells. Finally, treatment of mice bearing DSRCT xenografts with a combination of cetuximab and afatinib significantly reduced tumor growth. These data provide a rationale for evaluating EGFR antagonists in patients with DSRCT. This article has an associated First Person interview with the joint first authors of the paper.
- Published
- 2022
- Full Text
- View/download PDF
8. Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer
- Author
-
Yusuke Inoue, Ana Nikolic, Dylan Farnsworth, Rocky Shi, Fraser D Johnson, Alvin Liu, Marc Ladanyi, Romel Somwar, Marco Gallo, and William W Lockwood
- Subjects
lung cancer ,lineage transformation ,ERK signaling ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Lineage transformation between lung cancer subtypes is a poorly understood phenomenon associated with resistance to treatment and poor patient outcomes. Here, we aimed to model this transition to define underlying biological mechanisms and identify potential avenues for therapeutic intervention. Small cell lung cancer (SCLC) is neuroendocrine in identity and, in contrast to non-SCLC (NSCLC), rarely contains mutations that drive the MAPK pathway. Likewise, NSCLCs that transform to SCLC concomitantly with development of therapy resistance downregulate MAPK signaling, suggesting an inverse relationship between pathway activation and lineage state. To test this, we activated MAPK in SCLC through conditional expression of mutant KRAS or EGFR, which revealed suppression of the neuroendocrine differentiation program via ERK. We found that ERK induces the expression of ETS factors that mediate transformation into a NSCLC-like state. ATAC-seq demonstrated ERK-driven changes in chromatin accessibility at putative regulatory regions and global chromatin rewiring at neuroendocrine and ETS transcriptional targets. Further, ERK-mediated induction of ETS factors as well as suppression of neuroendocrine differentiation were dependent on histone acetyltransferase activities of CBP/p300. Overall, we describe how the ERK-CBP/p300-ETS axis promotes a lineage shift between neuroendocrine and non-neuroendocrine lung cancer phenotypes and provide rationale for the disruption of this program during transformation-driven resistance to targeted therapy.
- Published
- 2021
- Full Text
- View/download PDF
9. RET inhibition in novel patient-derived models of RET fusion- positive lung adenocarcinoma reveals a role for MYC upregulation
- Author
-
Takuo Hayashi, Igor Odintsov, Roger S. Smith, Kota Ishizawa, Allan J. W. Liu, Lukas Delasos, Christopher Kurzatkowski, Huichun Tai, Eric Gladstone, Morana Vojnic, Shinji Kohsaka, Ken Suzawa, Zebing Liu, Siddharth Kunte, Marissa S. Mattar, Inna Khodos, Monika A. Davare, Alexander Drilon, Emily Cheng, Elisa de Stanchina, Marc Ladanyi, and Romel Somwar
- Subjects
ret fusion pdx ,myc ,ret inhibitor ,transcriptome profiling ,nsclc ,Medicine ,Pathology ,RB1-214 - Abstract
Multi-kinase RET inhibitors, such as cabozantinib and RXDX-105, are active in lung cancer patients with RET fusions; however, the overall response rates to these two drugs are unsatisfactory compared to other targeted therapy paradigms. Moreover, these inhibitors may have different efficacies against RET rearrangements depending on the upstream fusion partner. A comprehensive preclinical analysis of the efficacy of RET inhibitors is lacking due to a paucity of disease models harboring RET rearrangements. Here, we generated two new patient-derived xenograft (PDX) models, one new patient-derived cell line, one PDX-derived cell line, and several isogenic cell lines with RET fusions. Using these models, we re-examined the efficacy and mechanism of action of cabozantinib and found that this RET inhibitor was effective at blocking growth of cell lines, activating caspase 3/7 and inhibiting activation of ERK and AKT. Cabozantinib treatment of mice bearing RET fusion-positive cell line xenografts and two PDXs significantly reduced tumor proliferation without adverse toxicity. Moreover, cabozantinib was effective at reducing growth of a lung cancer PDX that was not responsive to RXDX-105. Transcriptomic analysis of lung tumors and cell lines with RET alterations showed activation of a MYC signature and this was suppressed by treatment of cell lines with cabozantinib. MYC protein levels were rapidly depleted following cabozantinib treatment. Taken together, our results demonstrate that cabozantinib is an effective agent in preclinical models harboring RET rearrangements with three different 5′ fusion partners (CCDC6, KIF5B and TRIM33). Notably, we identify MYC as a protein that is upregulated by RET expression and downregulated by treatment with cabozantinib, opening up potentially new therapeutic avenues for the combinatorial targetin of RET fusion- driven lung cancers. The novel RET fusion-dependent preclinical models described here represent valuable tools for further refinement of current therapies and the evaluation of novel therapeutic strategies.
- Published
- 2021
- Full Text
- View/download PDF
10. Induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors in mutant EGFR-dependent lung adenocarcinomas.
- Author
-
Yixuan Gong, Romel Somwar, Katerina Politi, Marissa Balak, Juliann Chmielecki, Xuejun Jiang, and William Pao
- Subjects
Medicine - Abstract
Mutations in the epidermal growth factor receptor (EGFR) gene are associated with increased sensitivity of lung cancers to kinase inhibitors like erlotinib. Mechanisms of cell death that occur after kinase inhibition in these oncogene-dependent tumors have not been well delineated. We sought to improve understanding of this process in order to provide insight into mechanisms of sensitivity and/or resistance to tyrosine kinase inhibitors and to uncover new targets for therapy.Using a panel of human lung cancer cell lines that harbor EGFR mutations and a variety of biochemical, molecular, and cellular techniques, we show that EGFR kinase inhibition in drug-sensitive cells provokes apoptosis via the intrinsic pathway of caspase activation. The process requires induction of the proapoptotic BH3-only BCL2 family member BIM (i.e., BCL2-like 11, or BCL2L11); erlotinib dramatically induces BIM levels in sensitive but not in resistant cell lines, and knockdown of BIM expression by RNA interference virtually eliminates drug-induced cell killing in vitro. BIM status is regulated at both transcriptional and posttranscriptional levels and is influenced by the extracellular signal-regulated kinase (ERK) signaling cascade downstream of EGFR. Consistent with these findings, lung tumors and xenografts from mice bearing mutant EGFR-dependent lung adenocarcinomas display increased concentrations of Bim after erlotinib treatment. Moreover, an inhibitor of antiapoptotic proteins, ABT-737, enhances erlotinib-induced cell death in vitro.In drug-sensitive EGFR mutant lung cancer cells, induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors. This finding implies that the intrinsic pathway of caspase activation may influence sensitivity and/or resistance of EGFR mutant lung tumor cells to EGFR kinase inhibition. Manipulation of the intrinsic pathway could be a therapeutic strategy to enhance further the clinical outcomes of patients with EGFR mutant lung tumors.
- Published
- 2007
- Full Text
- View/download PDF
11. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain.
- Author
-
William Pao, Vincent A Miller, Katerina A Politi, Gregory J Riely, Romel Somwar, Maureen F Zakowski, Mark G Kris, and Harold Varmus
- Subjects
Medicine - Abstract
Lung adenocarcinomas from patients who respond to the tyrosine kinase inhibitors gefitinib (Iressa) or erlotinib (Tarceva) usually harbor somatic gain-of-function mutations in exons encoding the kinase domain of the epidermal growth factor receptor (EGFR). Despite initial responses, patients eventually progress by unknown mechanisms of "acquired" resistance.We show that in two of five patients with acquired resistance to gefitinib or erlotinib, progressing tumors contain, in addition to a primary drug-sensitive mutation in EGFR, a secondary mutation in exon 20, which leads to substitution of methionine for threonine at position 790 (T790M) in the kinase domain. Tumor cells from a sixth patient with a drug-sensitive EGFR mutation whose tumor progressed on adjuvant gefitinib after complete resection also contained the T790M mutation. This mutation was not detected in untreated tumor samples. Moreover, no tumors with acquired resistance had KRAS mutations, which have been associated with primary resistance to these drugs. Biochemical analyses of transfected cells and growth inhibition studies with lung cancer cell lines demonstrate that the T790M mutation confers resistance to EGFR mutants usually sensitive to either gefitinib or erlotinib. Interestingly, a mutation analogous to T790M has been observed in other kinases with acquired resistance to another kinase inhibitor, imatinib (Gleevec).In patients with tumors bearing gefitinib- or erlotinib-sensitive EGFR mutations, resistant subclones containing an additional EGFR mutation emerge in the presence of drug. This observation should help guide the search for more effective therapy against a specific subset of lung cancers.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.