1. Avirulence depletion assay: Combining R gene-mediated selection with bulk sequencing for rapid avirulence gene identification in wheat powdery mildew.
- Author
-
Kunz, Lukas, Jigisha, Jigisha, Menardo, Fabrizio, Sotiropoulos, Alexandros G., Zbinden, Helen, Zou, Shenghao, Tang, Dingzhong, Hückelhoven, Ralph, Keller, Beat, and Müller, Marion C.
- Abstract
Wheat production is threatened by multiple fungal pathogens, such as the wheat powdery mildew fungus (Blumeria graminis f. sp. tritici, Bgt). Wheat resistance breeding frequently relies on the use of resistance (R) genes that encode diverse immune receptors which detect specific avirulence (AVR) effectors and subsequently induce an immune response. While R gene cloning has accelerated recently, AVR identification in many pathogens including Bgt lags behind, preventing pathogen-informed deployment of resistance sources. Here we describe a new "avirulence depletion (AD) assay" for rapid identification of AVR genes in Bgt. This assay relies on the selection of a segregating, haploid F1 progeny population on a resistant host, followed by bulk sequencing, thereby allowing rapid avirulence candidate gene identification with high mapping resolution. In a proof-of-concept experiment we mapped the AVR component of the wheat immune receptor Pm3a to a 25 kb genomic interval in Bgt harboring a single effector, the previously described AvrPm3
a2/f2 . Subsequently, we applied the AD assay to map the unknown AVR effector recognized by the Pm60 immune receptor. We show that AvrPm60 is encoded by three tandemly arrayed, nearly identical effector genes that trigger an immune response upon co-expression with Pm60 and its alleles Pm60a and Pm60b. We furthermore provide evidence that Pm60 outperforms Pm60a and Pm60b through more efficient recognition of AvrPm60 effectors, suggesting it should be prioritized for wheat breeding. Finally, we show that virulence towards Pm60 is caused by simultaneous deletion of all AvrPm60 gene paralogs and that isolates lacking AvrPm60 are especially prevalent in the US thereby limiting the potential of Pm60 in this region. The AD assay is a powerful new tool for rapid and inexpensive AVR identification in Bgt with the potential to contribute to pathogen-informed breeding decisions for the use of novel R genes and regionally tailored gene deployment. Author summary: Breeding for disease resistant cultivars that withstand pathogen infection represents an important strategy for environmentally sustainable wheat production. The underlying disease resistance genes however vary greatly in their efficacy and durability against fast evolving fungal pathogens such as wheat powdery mildew. Pathogens evade recognition by immune receptors through mutation or loss of recognized avirulence effector proteins, resulting in local or global breakdown of resistance genes. To improve the durability of resistance genes and allow for efficient regional deployment of resistance sources, pathogen-informed strategies that rely on avirulence effector identification, characterization and monitoring are therefore crucial. Here, we describe a new approach for rapid identification of avirulence effectors in the wheat powdery mildew pathogen: the AD assay. We show that the AD assay reduces time and costs compared to previous approaches, while simultaneously allowing candidate gene identification with high precision. We deploy the AD assay to identify the avirulence effector AvrPm60 recognized by the wheat immune receptor Pm60 and characterize the prerequisites of Pm60-mediated resistance. Our study shows how rapid avirulence effector identification can contribute to a detailed understanding of the interplay between avirulence effectors and resistance genes and can thus guide future breeding decisions. [ABSTRACT FROM AUTHOR]- Published
- 2025
- Full Text
- View/download PDF