1. Role of 5-HT(1) receptor subtypes in the modulation of pain and synaptic transmission in rat spinal superficial dorsal horn.
- Author
-
Jeong HJ, Mitchell VA, Vaughan CW, Jeong, Hyo-Jin, Mitchell, Vanessa A, and Vaughan, Christopher W
- Abstract
Background and Purpose: 5-HT receptor agonists have variable nociceptive effects within the spinal cord. While there is some evidence for 5-HT(1A) spinally-mediated analgesia, the role of other 5-HT(1) receptor subtypes remains unclear. In the present study, we examined the spinal actions of a range of 5-HT(1) agonists, including sumatriptan, on acute pain, plus their effect on afferent-evoked synaptic transmission onto superficial dorsal horn neurons.Experimental Approach: For in vivo experiments, 5-HT agonists were injected via chronically implanted spinal catheters to examine their effects in acute mechanical and thermal pain assays using a paw pressure analgesymeter and a Hargreave's device. For in vitro experiments, whole-cell patch-clamp recordings of primary afferent-evoked glutamatergic EPSC were made from lamina II neurons in rat lumbar spinal slices.Key Results: Intrathecal (i.t.) delivery of the 5-HT(1A) agonist R ± 8-OH-DPAT (30-300 nmol) produced a dose-dependent thermal, but not mechanical, analgesia. Sumatriptan and the 5-HT(1B), 5-HT(1D), 5-HT(1F) agonists CP93129, PNU109291 and LY344864 (100 nmol) had no effect on either acute pain assay. R ± 8-OH-DPAT (1 µM) and sumatriptan (3 µM) both reduced the amplitude of the evoked EPSC. In contrast, CP93129, PNU109291 and LY344864 (0.3-3 µM) had no effect on the evoked EPSC. The actions of both R ± 8-OH-DPAT and sumatriptan were abolished by the 5-HT(1A) antagonist WAY100635 (3 µM).Conclusions and Implications: These findings indicate that the 5-HT(1A) receptor subtype predominantly mediates the acute antinociceptive and cellular actions of 5-HT(1) ligands within the rat superficial dorsal horn. [ABSTRACT FROM AUTHOR]- Published
- 2012
- Full Text
- View/download PDF