7 results on '"Wei, Linjing"'
Search Results
2. ECF-Net: Enhanced, Channel-Based, Multi-Scale Feature Fusion Network for COVID-19 Image Segmentation.
- Author
-
Ji, Zhengjie, Zhou, Junhao, Wei, Linjing, Bao, Shudi, Chen, Meng, Yuan, Hongxing, and Zheng, Jianjun
- Subjects
TRANSFORMER models ,ARCHITECTURAL design ,IMAGE intensifiers ,COMPUTED tomography ,PARALLEL processing - Abstract
Accurate segmentation of COVID-19 lesion regions in lung CT images aids physicians in analyzing and diagnosing patients' conditions. However, the varying morphology and blurred contours of these regions make this task complex and challenging. Existing methods utilizing Transformer architecture lack attention to local features, leading to the loss of detailed information in tiny lesion regions. To address these issues, we propose a multi-scale feature fusion network, ECF-Net, based on channel enhancement. Specifically, we leverage the learning capabilities of both CNN and Transformer architectures to design parallel channel extraction blocks in three different ways, effectively capturing diverse lesion features. Additionally, to minimize irrelevant information in the high-dimensional feature space and focus the network on useful and critical information, we develop adaptive feature generation blocks. Lastly, a bidirectional pyramid-structured feature fusion approach is introduced to integrate features at different levels, enhancing the diversity of feature representations and improving segmentation accuracy for lesions of various scales. The proposed method is tested on four COVID-19 datasets, demonstrating mIoU values of 84.36%, 87.15%, 83.73%, and 75.58%, respectively, outperforming several current state-of-the-art methods and exhibiting excellent segmentation performance. These findings provide robust technical support for medical image segmentation in clinical practice. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. SA-ConvNeXt: A Hybrid Approach for Flower Image Classification Using Selective Attention Mechanism.
- Author
-
Mo, Henghui and Wei, Linjing
- Subjects
- *
IMAGE recognition (Computer vision) , *CONVOLUTIONAL neural networks , *FEATURE extraction , *DEEP learning , *SELECTIVITY (Psychology) , *FLOWERS - Abstract
In response to the current lack of annotations for flower images and insufficient focus on key image features in traditional fine-grained flower image classification based on deep learning, this study proposes the SA-ConvNeXt flower image classification model. Initially, in the image preprocessing stage, a padding algorithm was used to prevent image deformation and loss of detail caused by scaling. Subsequently, the model was integrated using multi-level feature extraction within the Efficient Channel Attention (ECA) mechanism, forming an M-ECA structure to capture channel features at different levels; a pixel attention mechanism was also introduced to filter out irrelevant or noisy information in the images. Following this, a parameter-free attention module (SimAM) was introduced after deep convolution in the ConvNeXt Block to reweight the input features. SANet, which combines M-ECA and pixel attention mechanisms, was employed at the end of the module to further enhance the model's dynamic extraction capability of channel and pixel features. Considering the model's generalization capability, transfer learning was utilized to migrate the pretrained weights of ConvNeXt on the ImageNet dataset to the SA-ConvNeXt model. During training, the Focal Loss function and the Adam optimizer were used to address sample imbalance and reduce gradient fluctuations, thereby enhancing training stability. Finally, the Grad-CAM++ technique was used to generate heatmaps of classification predictions, facilitating the visualization of effective features and deepening the understanding of the model's focus areas. Comparative experiments were conducted on the Oxford Flowers102 flower image dataset. Compared to existing flower image classification technologies, SA-ConvNeXt performed excellently, achieving a high accuracy of 96.7% and a recall rate of 98.2%, with improvements of 4.0% and 3.7%, respectively, compared to the original ConvNeXt. The results demonstrate that SA-ConvNeXt can effectively capture more accurate key features of flower images, providing an effective technical means for flower recognition and classification. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. ICS-ResNet: A Lightweight Network for Maize Leaf Disease Classification.
- Author
-
Ji, Zhengjie, Bao, Shudi, Chen, Meng, and Wei, Linjing
- Subjects
CONVOLUTIONAL neural networks ,AGRICULTURAL technology ,SUSTAINABLE agriculture ,CORN diseases ,IMAGE recognition (Computer vision) - Abstract
The accurate identification of corn leaf diseases is crucial for preventing disease spread and improving corn yield. Plant leaf images are often affected by factors such as complex backgrounds, climate, light, and sample data imbalance. To address these issues, we propose a lightweight convolutional neural network, ICS-ResNet, based on ResNet50. This network incorporates improved spatial and channel attention modules as well as a deep separable residual structure to enhance recognition accuracy. (1) The residual connections in the ResNet network prevent gradient loss during deep network training. (2) The improved channel attention (ICA) and spatial attention (ISA) modules fully utilize semantic information from different feature layers to accurately localize key features of the network. (3) To reduce the number of parameters and lower computational costs, we replace traditional convolutional computation with a depth-separable residual structure. (4) We also employ cosine annealing to dynamically adjust the learning rate, enhancing the network's training stability, improving model convergence, and preventing local optima. Experiments on the corn dataset in Plant Village compare the proposed ICS-ResNet with eight popular networks: CSPNet, InceptionNet_v3, EfficientNet, ShuffleNet, MobileNet, ResNet50, ResNet101 and ResNet152. The results show that the ICS-ResNet achieves an accuracy of 98.87%, which is 5.03%, 3.18%, 1.13%, 1.81%, 1.13%, 0.68%, 0.44% and 0.60% higher than the other networks, respectively. Furthermore, the number of parameters and computations are reduced by 69.21% and 54.88%, respectively, compared to the original ResNet50 network, significantly improving the efficiency of corn leaf disease classification. The study provides strong technical support for sustainable agriculture and the promotion of agricultural science and technology innovation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Fine Segmentation of Chinese Character Strokes Based on Coordinate Awareness and Enhanced BiFPN.
- Author
-
Mo, Henghui and Wei, Linjing
- Subjects
- *
CONSCIOUSNESS raising , *CHINESE characters , *SPINE - Abstract
Considering the complex structure of Chinese characters, particularly the connections and intersections between strokes, there are challenges in low accuracy of Chinese character stroke extraction and recognition, as well as unclear segmentation. This study builds upon the YOLOv8n-seg model to propose the YOLOv8n-seg-CAA-BiFPN Chinese character stroke fine segmentation model. The proposed Coordinate-Aware Attention mechanism (CAA) divides the backbone network input feature map into four parts, applying different weights for horizontal, vertical, and channel attention to compute and fuse key information, thus capturing the contextual regularity of closely arranged stroke positions. The network's neck integrates an enhanced weighted bi-directional feature pyramid network (BiFPN), enhancing the fusion effect for features of strokes of various sizes. The Shape-IoU loss function is adopted in place of the traditional CIoU loss function, focusing on the shape and scale of stroke bounding boxes to optimize the bounding box regression process. Finally, the Grad-CAM++ technique is used to generate heatmaps of segmentation predictions, facilitating the visualization of effective features and a deeper understanding of the model's focus areas. Trained and tested on the public Chinese character stroke datasets CCSE-Kai and CCSE-HW, the model achieves an average accuracy of 84.71%, an average recall rate of 83.65%, and a mean average precision of 80.11%. Compared to the original YOLOv8n-seg and existing mainstream segmentation models like SegFormer, BiSeNetV2, and Mask R-CNN, the average accuracy improved by 3.50%, 4.35%, 10.56%, and 22.05%, respectively; the average recall rates improved by 4.42%, 9.32%, 15.64%, and 24.92%, respectively; and the mean average precision improved by 3.11%, 4.15%, 8.02%, and 19.33%, respectively. The results demonstrate that the YOLOv8n-seg-CAA-BiFPN network can accurately achieve Chinese character stroke segmentation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Feature Selection in High Dimensional Biomedical Data Based on BF-SFLA.
- Author
-
Dai, Yongqiang, Niu, Lili, Wei, Linjing, and Tang, Jie
- Subjects
FEATURE selection ,PARTICLE swarm optimization ,CLASSIFICATION algorithms ,K-nearest neighbor classification ,GLOBAL optimization - Abstract
High-dimensional biomedical data contained many irrelevant or weakly correlated features, which affected the efficiency of disease diagnosis. This manuscript presented a feature selection method for high-dimensional biomedical data based on the chemotaxis foraging-shuffled frog leaping algorithm (BF-SFLA). The performance of the BF-SFLA based feature selection method was further improved by introducing chemokine operation and balanced grouping strategies into the shuffled frog leaping algorithm, which maintained the balance between global optimization and local optimization and reduced the possibility of the algorithm falling into local optimization. To evaluate the proposed method's effectiveness, we employed the K-NN (k-nearest Neighbor) and C4.5 decision tree classification algorithm with a comparative analysis. We compared our proposed approach with improved genetic algorithms, particle swarm optimization, and the basic shuffled frog leaping algorithm. Experimental results showed that the feature selection method based on BF-SFLA obtained a better feature subset, improved classification accuracy, and shortened classification time. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
7. Jointly Learning Topics in Sentence Embedding for Document Summarization.
- Author
-
Gao, Yang, Xu, Yue, Huang, Heyan, Liu, Qian, Wei, Linjing, and Liu, Luyang
- Subjects
THESIS statements (Rhetoric) ,COSINE function ,SENTIMENT analysis ,NEWS agencies ,EMBEDDINGS (Mathematics) - Abstract
Summarization systems for various applications, such as opinion mining, online news services, and answering questions, have attracted increasing attention in recent years. These tasks are complicated, and a classic representation using bag-of-words does not adequately meet the comprehensive needs of applications that rely on sentence extraction. In this paper, we focus on representing sentences as continuous vectors as a basis for measuring relevance between user needs and candidate sentences in source documents. Embedding models based on distributed vector representations are often used in the summarization community because, through cosine similarity, they simplify sentence relevance when comparing two sentences or a sentence/query and a document. However, the vector-based embedding models do not typically account for the salience of a sentence, and this is a very necessary part of document summarization. To incorporate sentence salience, we developed a model, called CCTSenEmb, that learns latent discriminative Gaussian topics in the embedding space and extended the new framework by seamlessly incorporating both topic and sentence embedding into one summarization system. To facilitate the semantic coherence between sentences in the framework of prediction-based tasks for sentence embedding, the CCTSenEmb further considers the associations between neighboring sentences. As a result, this novel sentence embedding framework combines sentence representations, word-based content, and topic assignments to predict the representation of the next sentence. A series of experiments with the DUC datasets validate CCTSenEmb's efficacy in document summarization in a query-focused extraction-based setting and an unsupervised ILP-based setting. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.