1. Possibilistic reasoning from partially ordered belief bases with the sure thing principle
- Author
-
Cayrol, C., Dubois, D., Fayçal Touazi, Argumentation, Décision, Raisonnement, Incertitude et Apprentissage (IRIT-ADRIA), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique (CNRS), Université M'Hamed Bougara Boumerdes (UMBB), Institut National Polytechnique de Toulouse - INPT (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
Possibility theory ,Partially ordered bases ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,Computer Science::Logic in Computer Science ,Comparative probability ,Adjunction rule ,Intelligence artificielle ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; We consider the problem of reasoning from logical bases equipped with a partial order expressing relative certainty, with a view to construct a partially ordered deduc-tive closure via syntactic inference. At the syntactic level we use a language expressing pairs of related formulas and axioms describing the properties of the order. Reasoning about uncertainty using possibility theory relies on the idea that if an agent believes each among two propositions to some extent, then this agent should believe their conjunction to the same extent. This principle is known as adjunction. Adjunction is often accepted in epistemic logic but fails with probabilistic reasoning. In the latter, another principle prevails, namely the sure thing principle, that claims that the certainty ordering between propositions should be invariant to the addition or deletion of possible worlds common to both sets of models of these propositions. Pursuing our work on relative certainty logic based on possibility theory, we propose a qualitative likelihood logic that respects the sure thing principle, albeit using a likelihood relation that preserves adjunction.
- Published
- 2018