1. Using ASR-Generated Text for Spoken Language Modeling
- Author
-
Nicolas Hervé, Valentin Pelloin, Benoit Favre, Franck Dary, Antoine Laurent, Sylvain Meignier, Laurent Besacier, Institut National de l'Audiovisuel (INA), Laboratoire d'Informatique de l'Université du Mans (LIUM), Le Mans Université (UM), Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Naver Labs Europe [Meylan], and ANR-19-CE23-0004,AISSPER,Intelligence artificielle pour la compréhension du langage parlé contrôlée sémantiquement(2019)
- Subjects
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[INFO]Computer Science [cs] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; This papers aims at improving spoken language modeling (LM) using very large amount of automatically transcribed speech. We leverage the INA (French National Audiovisual Institute 1) collection and obtain 19GB of text after applying ASR on 350,000 hours of diverse TV shows. From this, spoken language models are trained either by fine-tuning an existing LM (FlauBERT 2) or through training a LM from scratch. The new models (FlauBERT-Oral) are shared with the community 3 and are evaluated not only in terms of word prediction accuracy but also for two downstream tasks: classification of TV shows and syntactic parsing of speech. Experimental results show that FlauBERT-Oral is better than its initial FlauBERT version demonstrating that, despite its inherent noisy nature, ASR-Generated text can be useful to improve spoken language modeling.
- Published
- 2022
- Full Text
- View/download PDF