1. Design of a parallel hybrid direct/iterative sparse linear solver
- Author
-
Gaidamour, Jérémie, Gaidamour, Jérémie, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems (BACCHUS), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux I, Jean Roman(roman@labri.fr), and Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)
- Subjects
parallelism ,décomposition de domaine ,domain decomposition.distributed memory ,Calcul haute performance ,sparse linear algebra ,parallel solver for sparse linear systems ,direct-iterative hybrid method ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,solveur parallèle de systèmes linéaires creux ,algèbre linéaire creuse ,complément de Schur ,factorisation incomplète ,Schur complement ,[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation ,incomplete factorization ,High-performance computing ,parallélisme ,méthode hybride directe-itérative - Abstract
This thesis presents a parallel resolution method for sparse linear systems which combines effectively techniques of direct and iterative solvers using a Schur complement approach. A domain decomposition is built ; the interiors of the subdomains are eliminated by a direct method in order to use an iterative method only on the interface unknowns. The system on the interface (Schur complement) is solved thanks to an iterative method preconditioned by a global incomplete factorization. A special ordering on the Schur complement allows to build a scalable preconditioner. Algorithms minimizing the memory peak that appears during the construction of the preconditioner are presented. The memory is balanced thanks to a multiple domains per processors parallelization scheme. The methods are implemented in the HIPS solver and parallel experimental results are presented on large industrial test cases., Cette thèse présente une méthode de résolution parallèle de systèmes linéaires creux qui combine efficacement les techniques de résolutions directes et itératives en utilisant une approche de type complément de Schur. Nous construisons une décomposition de domaine. L'intérieur des sous-domaines est éliminé de manière directe pour se ramener à un problème sur l'interface. Ce problème est résolu grâce à une méthode itérative préconditionnée par une factorisation incomplète. Un réordonnancement de l'interface permet la construction d'un préconditionneur global du complément de Schur. Des algorithmes minimisant le pic mémoire de la construction du préconditionneur sont proposés. Nous exploitons un schéma d'équilibrage de charge utilisant une répartition de multiples sous-domaines sur les processeurs. Les méthodes sont implémentées dans le solveur HIPS et des résultats expérimentaux parallèles sont présentés sur de grands cas tests industriels.
- Published
- 2009