4 results on '"El Rhabi, Mohammed"'
Search Results
2. A robust multi-frame super resolution based on curvature registration and second order variational regularization
- Author
-
Laghrib, A., Hakim, A., Raghay, S., Mohammed El Rhabi, Laboratoire de Mathématiques Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane (LMA), Laboratoire de Mathématiques Appliquées, Faculté des Sciences et Techniques, Université Cadi Ayyad (LAMAI), Département Ingénierie Mathématique et Informatique, École des Ponts ParisTech (IMI), École des Ponts ParisTech (ENPC), and El Rhabi, Mohammed
- Subjects
restoration ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,[MATH] Mathematics [math] ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,super resolution ,PDE ,MAP estimator ,regularization ,robust ,[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV] ,2000 Mathematics Subject Classification: 35G20, 35F20, 35J05, 49J40, 49M25 ,Computer Science::Computer Vision and Pattern Recognition ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,curvature registration ,image ,[MATH]Mathematics [math] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; Multiframe image super-resolution is a technique to obtain a high-resolution image by fusing a sequence of low-resolution ones. This paper deals with a new approach to robust super resolution based on regularization framework. Since registration is an important step that ensures the success of super resolution algorithms, must choose the most suitable method. We suggest a new algorithm specified at low resolution images with small deformations using fourth-order partial differential equations (PDE) regularization in the last step of super resolution. The deformations are not parametric and differs from one image to another. We use a curvature registration specially because image are slightly deformed. Experimental results show the robustness of the proposed method compared to classical super resolution methods.
- Published
- 2015
3. Orthogonal projection algorithm for first and second order total variation denoising
- Author
-
Idriss El Mourabit, El-Rhabi, M., Hakim, A., Université Cadi Ayyad [Marrakech] (UCA), École des Ponts ParisTech (ENPC), Université Cadi Ayyad [Marrakech], École des Ponts ParisTech ( ENPC ), and El Rhabi, Mohammed
- Subjects
Total variation ,Denoising ,Partial Differential Equation ,[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV] ,Projection algorithm ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,[ INFO.INFO-TI ] Computer Science [cs]/Image Processing ,[ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA] ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,Partial differential equations ,second order total variation ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; The denoising problem is the process of removing the noise from a degraded image. As we know, the Rodin Osher Fatemi (ROF) denoising model based on total variation is a robust approach for solving the ill-posed problem. To avoid the staircasing effects caused by the first order total variation, the second order one is proposed. In this work, we present an orthogonal projection algorithm for solving the ROF model with first and second order total variation. The efficiency and robustness against noise of the proposed model are illustrated and compared with the classical methods through numerical simulations.
- Published
- 2015
4. A NEW IMAGE DEBLURRING APPROACH USING A SPECIAL CONVOLUTION EXPANSION
- Author
-
Mohammed El Rhabi, Fenniri, H., Hakim, A., Moreau, E., Département Ingénierie Mathématique et Informatique, École des Ponts ParisTech (IMI), École des Ponts ParisTech (ENPC), Centre de Recherche en Sciences et Technologies de l'Information et de la Communication - EA 3804 (CRESTIC), Université de Reims Champagne-Ardenne (URCA), Université Cadi Ayyad [Marrakech] (UCA), Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Département Ingénierie Mathématique et Informatique, Ecole des Ponts ParisTech ( IMI ), Centre de Recherche en Sciences et Technologies de l'Information et de la Communication - EA 3804 ( CRESTIC ), Université de Reims Champagne-Ardenne ( URCA ), Laboratoire de Mathématiques Appliquées, Faculté des Sciences et Techniques, Université Cadi Ayyad ( LAMAI ), Laboratoire d'Informatique et Systèmes ( LIS ), Aix Marseille Université ( AMU ) -Université de Toulon ( UTLN ) -Centre National de la Recherche Scientifique ( CNRS ), El Rhabi, Mohammed, and Laboratoire de Mathématiques Appliquées, Faculté des Sciences et Techniques, Université Cadi Ayyad (LAMAI)
- Subjects
[ MATH ] Mathematics [math] ,[ INFO.INFO-MO ] Computer Science [cs]/Modeling and Simulation ,[ INFO ] Computer Science [cs] ,The moment problem ,Blind deblurring ,Blind deconvolution ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Image deblurring ,[MATH] Mathematics [math] ,[ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA] ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,[INFO] Computer Science [cs] ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Image restoration ,[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV] ,Computer Science::Computer Vision and Pattern Recognition ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,[ INFO.INFO-TI ] Computer Science [cs]/Image Processing ,[INFO]Computer Science [cs] ,[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation ,[MATH]Mathematics [math] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; The deconvolution problem in image processing consists of reconstructing an original image from an observed and thus a degraded one. This degradation is often modelized as a linear operator plus an additive noise. The linear operator is called the blurring operator and the goal consists of deblurring the image. Very often, the blurring operator is modelized as a convolution whose kernel (the Point Spread Function) is not directly known in practice. In this paper, we first propose a new model for convolution and we validate it through computer simulations. Basically, we expend the kernel leading to a sequence of real coefficients in link with the moment problem. We particularly emphasize the radial isotropic case.
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.