1. Gravitational probes of ultra-light axions
- Author
-
Grin, Daniel, Amin, Mustafa A., Gluscevic, Vera, Hlǒzek, Renée, Marsh, David J.E., Poulin, Vivian, Prescod-Weinstein, Chanda, Smith, Tristan L., Ahmed, Zeeshan, Armengaud, Eric, Armstrong, Robert, Baccigalupi, Carlo, Baldi, Marco, Banik, Nilanjan, Barkana, Rennan, Barron, Darcy, Baumann, Daniel, Bechtol, Keith, Bischoff, Colin, Bleem, Lindsey, Bond, J. Richard, Borrill, Julian, Broadhurst, Tom, Carlstrom, John, Castorina, Emanuele, Clowe, Douglas, Cyr-Racine, Francis-Yan, Cooray, Asantha, Demarteau, Marcel, D'Amico, Guido, Doré, Oliver, Du, Xiaolong, Dunkley, Joanna, Dvorkin, Cora, Emami, Razieh, Essinger-Hileman, Tom, Ferreira, Pedro G., Flauger, Raphael, Foreman, Simon, Gerbino, Martina, Giblin, Jr John T., González-Morales, Alma, Green, Daniel, Gudmundsson, Jon E., Hanany, Shaul, Hertzberg, Mark, Hernández-Aguayo, César, Hill, J. Colin, Hirata, Christopher M., Hui, Lam, Huterer, Dragan, Iršič, Vid, Kadota, Kenji, Kamionkowski, Marc, Keeley, Ryan E., Kisner, Theodore, Knox, Lloyd, Koushiappas, Savvas M., Kovetz, Ely D., Kobayashi, Takeshi, Lattanzi, Massimiliano, Li, Bohua, Lidz, Adam, Liguori, Michele, Lommen, Andrea, de la Macorra, Axel, Matos, Tonatiuh, Masui, Kiyoshi, McAllister, Liam, McMahon, Jeff, McQuinn, Matthew, Meerburg, P. Daniel, Meyers, Joel, Mirbabayi, Mehrdad, Mukherjee, Suvodip, Muñoz, Julian B., Nagy, Johanna, Niemeyer, Jens, Nomerotski, Andrei, Nori, Matteo, Page, Lyman, Partridge, Bruce, Piacentini, Francesco, Pogosian, Levon, Pradler, Josef, Pryke, Clement, Puglisi, Giuseppe, Raccanelli, Alvise, Raffelt, Georg, Rajendran, Surjeet, Raveri, Marco, Redondo, Javier, Rindler-Daller, Tanja, Saikawa, Ken'ichi, Schive, Hsi-Yu, Schwabe, Bodo, Sehgal, Neelima, Senatore, Leonardo, Shapiro, Paul R., Sherwin, Blake D., Sikivie, Pierre, Simon, Sara, Slosar, Anže, Soda, Jiro, Spergel, David N., Staggs, Suzanne, Stebbins, Albert, Stompor, Radek, Suzuki, Aritoki, Tsai, Yu-Dai, Uhlemann, Cora, Umiltà, Caterina, Ureña-Lopez, L., Di Valentino, Eleonora, Venters, Tonia M., Vieregg, Abigail, Visinelli, Luca, Wallisch, Benjamin, Watson, Scott, Whitehorn, Nathan, Wu, W.L.K., Zaldarriaga, Matias, Zhu, Ningfeng, Laboratoire Univers et Particules de Montpellier (LUPM), and Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
High Energy Physics - Theory ,Astrophysics and Astronomy ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,gr-qc ,interference ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,dark matter: density ,Astrophysics::Cosmology and Extragalactic Astrophysics ,General Relativity and Quantum Cosmology ,microwaves: background ,High Energy Physics - Phenomenology (hep-ph) ,cosmological model: parameter space ,structure ,string model ,Particle Physics - Phenomenology ,background: anisotropy ,General Relativity and Cosmology ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,hep-th ,strong interaction ,hep-ph ,suppression ,tension ,High Energy Physics - Phenomenology ,High Energy Physics - Theory (hep-th) ,gravitation ,dark energy: density ,axion ,hydrogen ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,astro-ph.CO ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,black hole: mass spectrum ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,absorption ,Particle Physics - Theory ,signature ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The axion is a hypothetical, well-motivated dark-matter particle whose existence would explain the lack of charge-parity violation in the strong interaction. In addition to this original motivation, an `axiverse' of ultra-light axions (ULAs) with masses $10^{-33}\,{\rm eV}\lesssim m_{\rm a}\lesssim 10^{-10}\,{\rm eV}$ also emerges from string theory. Depending on the mass, such a ULA contributes to the dark-matter density, or alternatively, behaves like dark energy. At these masses, ULAs' classical wave-like properties are astronomically manifested, potentially mitigating observational tensions within the $\Lambda$CDM paradigm on local-group scales. ULAs also provide signatures on small scales such as suppression of structure, interference patterns and solitons to distinguish them from heavier dark matter candidates. Through their gravitational imprint, ULAs in the presently allowed parameter space furnish a host of observational tests to target in the next decade, altering standard predictions for microwave background anisotropies, galaxy clustering, Lyman-$\alpha$ absorption by neutral hydrogen along quasar sightlines, pulsar timing, and the black-hole mass spectrum., Comment: 5 pages, 1 figure, Astro2020 Decadal Survey science white paper
- Published
- 2019