1. Multi-model Meteorological and Aeolian Predictions for Mars 2020 and the Jezero Crater Region
- Author
-
Ryan C. Sullivan, Daniel Viúdez-Moreiras, M. de la Torre Juarez, B. Chide, R. J. Wilson, Tanguy Bertrand, Mark I. Richardson, Stephen R. Lewis, Frank Daerden, Jorge Pla-Garcia, Claire E. Newman, Lori Neary, Melinda A. Kahre, Aymeric Spiga, J. A. Rodriguez-Manfredi, François Forget, Agustín Sánchez-Lavega, Sánchez Lavega, Á. [0000-0001-7234-7634], Lewis, S. [0000-0001-7237-6494], National Aeronautics and Space Administration (NASA), European Space Agency (ESA), Centre National D'Etudes Spatiales (CNES), Aeolis Research, California Institute of Technology (CALTECH), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Space Science Institute [Boulder] (SSI), NASA Ames Research Center (ARC), The Open University [Milton Keynes] (OU), Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Cornell Center for Astrophysics and Planetary Science (CCAPS), Cornell University [New York], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Daytime ,010504 meteorology & atmospheric sciences ,Aeolian ,Atmospheric circulation ,Mars ,Atmospheric sciences ,01 natural sciences ,Wind speed ,Article ,Jezero crater ,Meteorology ,Impact crater ,0103 physical sciences ,Solstice ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Dust devils ,Atmosphere ,Dust Devils ,Mars 2020 ,Astronomy and Astrophysics ,Wind direction ,Atmospheric temperature ,13. Climate action ,Space and Planetary Science ,Aeolian processes ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Geology - Abstract
Nine simulations are used to predict the meteorology and aeolian activity of the Mars 2020 landing site region. Predicted seasonal variations of pressure and surface and atmospheric temperature generally agree. Minimum and maximum pressure is predicted at Ls similar to 145 degrees and 250 degrees, respectively. Maximum and minimum surface and atmospheric temperature are predicted at Ls similar to 180 degrees and 270 degrees, respectively; i.e., are warmest at northern fall equinox not summer solstice. Daily pressure cycles vary more between simulations, possibly due to differences in atmospheric dust distributions. Jezero crater sits inside and close to the NW rim of the huge Isidis basin, whose daytime upslope (similar to east-southeasterly) and nighttime downslope (similar to northwesterly) winds are predicted to dominate except around summer solstice, when the global circulation produces more southerly wind directions. Wind predictions vary hugely, with annual maximum speeds varying from 11 to 19 ms(-1) and daily mean wind speeds peaking in the first half of summer for most simulations but in the second half of the year for two. Most simulations predict net annual sand transport toward the WNW, which is generally consistent with aeolian observations, and peak sand fluxes in the first half of summer, with the weakest fluxes around winter solstice due to opposition between the global circulation and daytime upslope winds. However, one simulation predicts transport toward the NW, while another predicts fluxes peaking later and transport toward the WSW. Vortex activity is predicted to peak in summer and dip around winter solstice, and to be greater than at InSight and much greater than in Gale crater. We are grateful to reviewers Lori Fenton and Mackenzie Day for their detailed and insightful comments that resulted in a greatly improved manuscript. C.E.N. and M.I.R. were supported in this work by NASA Mars 2020 funding under JPL grant number 1514618. C.E.N. would also like to acknowledge the companionship of her beloved cat Sparky and the support of her fantastic mother Brenda during the writing of this manuscript during the COVID-19 pandemic. LMD co-authors F.F. and A.S. acknowledge funding support from Centre National d'Etudes Spatiales (CNES) and European Space Agency (ESA) and technical support for the enclosed simulations by E. Millour and L. Montabone. T.B. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. L.N. and F.D. acknowledge funding support from the European Space Agency (ESA) PROgramme de Developpement d'Experiences scientifiques (PRODEX) Office, contract no. Prodex_NOMADMarsScience_C4000121493_2017-2019. M.T.J.'s work was carried out at the Jet Propulsion Laboratory/California Institute of Technology under a NASA Mars 2020 grant. R.S.'s work was supported under NASA Mars 2020 grant number 80NM0018F0616. S.R.L. thanks the UK Space Agency for support under grants ST/R001405/1, ST/S00145X/1 and ST/T002913/1.
- Published
- 2021
- Full Text
- View/download PDF