1. The Combined Effects of Inhibitory and Electrical Synapses in Synchrony
- Author
-
David Golomb, Benjamin Pfeuty, Germán Mato, David Hansel, Neurophysique et physiologie du système moteur ( NPSM ), Université Paris Descartes - Paris 5 ( UPD5 ) -Centre National de la Recherche Scientifique ( CNRS ), Centro Atómico Bariloche [Argentine], Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] ( CONICET ) -Comisión Nacional de Energía Atómica [ARGENTINA] ( CNEA ), Instituto Balseiro [Bariloche], Comisión Nacional de Energía Atómica [ARGENTINA] ( CNEA ) -Universidad Nacional de Cuyo [Mendoza] ( UNCUYO ), Department of Physiology and Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev ( BGU ), Interdisciplinary Center for Neural Computation, The Hebrew University of Jerusalem ( HUJ ), Centre de neurophysique, physiologie, pathologie ( UMR 8119 ), Departamento de Fisica Teorica, Universidad Autonoma de Madrid ( UAM ), Laboratoire Franco-Israelien de Neurophysiologie et Neurophysique des Systèmes, Université Paris Descartes - Paris 5 ( UPD5 ), Neurophysique et physiologie du système moteur (NPSM), Université Paris Descartes - Paris 5 (UPD5)-Centre National de la Recherche Scientifique (CNRS), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Comisión Nacional de Energía Atómica [ARGENTINA] (CNEA), Comisión Nacional de Energía Atómica [ARGENTINA] (CNEA)-Universidad Nacional de Cuyo [Mendoza] (UNCUYO), Ben-Gurion University of the Negev (BGU), The Hebrew University of Jerusalem (HUJ), Centre de neurophysique, physiologie, pathologie (UMR 8119), Universidad Autonoma de Madrid (UAM), and Université Paris Descartes - Paris 5 (UPD5)
- Subjects
MESH: Gap Junctions ,Action Potentials ,Synaptic Transmission ,MESH: Synapses ,Synapse ,Models of neural computation ,MESH : Electric Conductivity ,Phase response ,MESH: Animals ,MESH : Dendrites ,MESH: Action Potentials ,Physics ,MESH : Synaptic Transmission ,MESH : Neural Networks (Computer) ,Gap Junctions ,MESH: Neural Inhibition ,MESH : Nonlinear Dynamics ,MESH: Interneurons ,MESH: Nonlinear Dynamics ,MESH : Computer Simulation ,medicine.anatomical_structure ,Electrical Synapses ,GABAergic ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,MESH : Gap Junctions ,MESH : Synapses ,Interneuron ,Cognitive Neuroscience ,Models, Neurological ,MESH: Electric Conductivity ,MESH : Interneurons ,MESH: Dendrites ,Inhibitory postsynaptic potential ,MESH: Neural Networks (Computer) ,MESH: Computer Simulation ,Arts and Humanities (miscellaneous) ,Interneurons ,MESH: Models, Neurological ,MESH : Action Potentials ,MESH: Synaptic Transmission ,medicine ,Animals ,MESH : Models, Neurological ,Computer Simulation ,Electric Conductivity ,Conductance ,Neural Inhibition ,Dendrites ,Nonlinear Dynamics ,MESH: Nerve Net ,[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Synapses ,MESH : Nerve Net ,Neural Networks, Computer ,MESH : Animals ,Nerve Net ,Neuroscience ,MESH : Neural Inhibition - Abstract
Recent experimental results have shown that GABAergic interneurons in the central nervous system are frequently connected via electrical synapses. Hence, depending on the area or the subpopulation, interneurons interact via inhibitory synapses or electrical synapses alone or via both types of interactions. The theoretical work presented here addresses the significance of these different modes of interactions for the interneuron networks dynamics. We consider the simplest system in which this issue can be investigated in models or in experiments: a pair of neurons, interacting via electrical synapses, inhibitory synapses, or both, and activated by the injection of a noisy external current. Assuming that the couplings and the noise are weak, we derive an analytical expression relating the cross-correlation (CC) of the activity of the two neurons to the phase response function of the neurons. When electrical and inhibitory interactions are not too strong, they combine their effect in a linear manner. In this regime, the effect of electrical and inhibitory interactions when combined can be deduced knowing the effects of each of the interactions separately. As a consequence, depending on intrinsic neuronal proper-ties, electrical and inhibitory synapses may cooperate, both promoting synchrony, or may compete, with one promoting synchrony while the other impedes it. In contrast, for sufficiently strong couplings, the two types of synapses combine in a nonlinear fashion. Remarkably, we find that in this regime, combining electrical synapses with inhibition ampli-fies synchrony, whereas electrical synapses alone would desynchronize the activity of the neurons. We apply our theory to predict how the shape of the CC of two neurons changes as a function of ionic channel conduc-tances, focusing on the effect of persistent sodium conductance, of the firing rate of the neurons and the nature and the strength of their interac-tions. These predictions may be tested using dynamic clamp techniques.
- Published
- 2005
- Full Text
- View/download PDF