Rudaz, Cyrielle, Demilecamps, Arnaud, Calas-Etienne, Sylvie, Courseau, Rémi, Bonnet, Laurent, Sallée, Hébert, Reichenauer, Gudrun, Wiener, Matthias, Rigacci, Arnaud, Budtova, Tatiana, Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre Scientifique et Technique du Bâtiment (CSTB), Bavarian Center for Applied Energy Research (ZAE Bayern), Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and American Chemical Society (ACS)
Acknowledgements: research leading to these results was funded within the 7th EU Framework Program, (FP7/2007-2013), under grant agreement n°260141, AEROCOINS project, and French National Research Agency (ANR), project “Nanocel” ANR-09-HABISOL-010.; International audience; Cellulose aerogels can be prepared via dissolution-coagulation-drying with supercritical CO2 (so-called “Aerocellulose”). They are ultra-light (apparent density 0.05-0.20 g/cm3), with rather high specific surface (200-300 m2/g) and pore sizes distribution ranging from a few tens of nanometers to few microns. In the view of Aerocellulose nanostructuring (for example, to achieve low thermal conductivity), two approaches were taken: i) cellulose chemical cross-linking and ii) preparation of cellulose-silica hybrid aerogels. Compared to pure Aerocellulose the thermal conductivity of such nanostructured Aerocellulose was found to be reduced and specific surface of organic-inorganic hybrids was increased up to 800 m2/g. Structure-properties relationships of these novel materials will be discussed.