1. A two-component parameterization of marine ice-nucleating particles based on seawater biology and sea spray aerosol measurements in the Mediterranean Sea
- Author
-
Jonathan V. Trueblood, Alesia Nicosia, Anja Engel, Birthe Zäncker, Matteo Rinaldi, Evelyn Freney, Melilotus Thyssen, Ingrid Obernosterer, Julie Dinasquet, Franco Belosi, Antonio Tovar-Sánchez, Araceli Rodriguez-Romero, Gianni Santachiara, Cécile Guieu, Karine Sellegri, Laboratoire de Météorologie Physique (LaMP), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Helmholtz Centre for Ocean Research [Kiel] (GEOMAR), Istituto di Scienze dell'Atmosfera e del Clima [Bologna] (ISAC), Consiglio Nazionale delle Ricerche (CNR), Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'océanographie de Villefranche (LOV), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Scripps Institution of Oceanography (SIO), University of California [San Diego] (UC San Diego), University of California-University of California, Instituto de Ciencias Marinas de Andalucia [Cádiz, Espagne] (ICMAN), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Scripps Institution of Oceanography (SIO - UC San Diego), University of California (UC)-University of California (UC), Centre National de la Recherche Scientifique (France), Institut national des sciences de l'Univers (France), French Alternative Energies and Atomic Energy Commission, Institut Français de Recherche pour l'Exploitation de la Mer, Météo-France, European Commission, NASA Ocean Biology and Biogeochemistry, and Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,0106 biological sciences ,010504 meteorology & atmospheric sciences ,13. Climate action ,010604 marine biology & hydrobiology ,[SDE]Environmental Sciences ,14. Life underwater ,01 natural sciences ,0105 earth and related environmental sciences - Abstract
Ice-nucleating particles (INPs) have a large impact on the climate-relevant properties of clouds over the oceans. Studies have shown that sea spray aerosols (SSAs), produced upon bursting of bubbles at the ocean surface, can be an important source of marine INPs, particularly during periods of enhanced biological productivity. Recent mesocosm experiments using natural seawater spiked with nutrients have revealed that marine INPs are derived from two separate classes of organic matter in SSAs. Despite this finding, existing parameterizations for marine INP abundance are based solely on single variables such as SSA organic carbon (OC) or SSA surface area, which may mask specific trends in the separate classes of INP. The goal of this paper is to improve the understanding of the connection between ocean biology and marine INP abundance by reporting results from a field study and proposing a new parameterization of marine INPs that accounts for the two associated classes of organic matter. The PEACETIME cruise took place from 10 May to 10 June 2017 in the Mediterranean Sea. Throughout the cruise, INP concentrations in the surface microlayer r (INPSML) and in SSAs (INPSSA) produced using a plunging aquarium apparatus were continuously monitored while surface seawater (SSW) and SML biological properties were measured in parallel. The organic content of artificially generated SSAs was also evaluated. INPSML concentrations were found to be lower than those reported in the literature, presumably due to the oligotrophic nature of the Mediter ranean Sea. A dust wet deposition event that occurred during the cruise increased the INP concentrations measured in the SML by an order of magnitude, in line with increases in iron in the SML and bacterial abundances. Increases in INPSSA were not observed until after a delay of 3 days compared to increases in the SML and are likely a result of a strong in fluence of bulk SSW INPs for the temperatures investigated (T =-18 °C for SSAs, T =-15 °C for SSW). Results con firmed that INPSSA are divided into two classes depending on their associated organic matter. Here we find that warm (T ≥-22 °C) INPSSA concentrations are correlated with water soluble organic matter (WSOC) in the SSAs, but also with SSW parameters (particulate organic carbon, POCSSW and INPSSW,-16C) while cold INPSSA (T, CHARMEX and MERMEX are supported by CNRS-INSU, IFREMER, CEA, and Météo-France as part of the programme MISTRALS coordinated by INSU. The Sea2Cloud project is funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Sea2Cloud grant agreement no. 771369). Emmanuel Boss's group is funded by NASA Ocean Biology and Biogeochemistry.
- Published
- 2021