1. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview
- Author
-
Claudia Campanale, Valeria Ancona, Daniela Losacco, Marina Tumolo, Domenico De Paola, Vito Felice Uricchio, and Carmine Massarelli
- Subjects
Pollution ,Environmental remediation ,Health, Toxicology and Mutagenesis ,media_common.quotation_subject ,chemistry.chemical_element ,lcsh:Medicine ,Review ,02 engineering and technology ,Wastewater ,010501 environmental sciences ,01 natural sciences ,Redox ,Chromium ,remediation ,Water Pollution, Chemical ,Animals ,Humans ,media_common.cataloged_instance ,pollution ,European union ,Groundwater ,Environmental Restoration and Remediation ,0105 earth and related environmental sciences ,media_common ,health risk ,lcsh:R ,Public Health, Environmental and Occupational Health ,021001 nanoscience & nanotechnology ,chemistry ,Environmental chemistry ,Environmental science ,Chromite ,chromium ,0210 nano-technology ,Oxidation-Reduction ,Water Pollutants, Chemical ,Environmental Monitoring - Abstract
Chromium is a potentially toxic metal occurring in water and groundwater as a result of natural and anthropogenic sources. Microbial interaction with mafic and ultramafic rocks together with geogenic processes release Cr (VI) in natural environment by chromite oxidation. Moreover, Cr (VI) pollution is largely related to several Cr (VI) industrial applications in the field of energy production, manufacturing of metals and chemicals, and subsequent waste and wastewater management. Chromium discharge in European Union (EU) waters is subjected to nationwide recommendations, which vary depending on the type of industry and receiving water body. Once in water, chromium mainly occurs in two oxidation states Cr (III) and Cr (VI) and related ion forms depending on pH values, redox potential, and presence of natural reducing agents. Public concerns with chromium are primarily related to hexavalent compounds owing to their toxic effects on humans, animals, plants, and microorganisms. Risks for human health range from skin irritation to DNA damages and cancer development, depending on dose, exposure level, and duration. Remediation strategies commonly used for Cr (VI) removal include physico-chemical and biological methods. This work critically presents their advantages and disadvantages, suggesting a site-specific and accurate evaluation for choosing the best available recovering technology.
- Published
- 2020