52 results on '"Grinyuk A."'
Search Results
2. First Results from Operating a Prototype Wide-Angle Telescope for the TAIGA Installation
- Author
-
D. A. Podgrudkov, E. A. Bonvech, I. V. Vaiman, D. V. Chernov, I. I. Astapov, P. A. Bezyazeekov, M. Blank, A. N. Borodin, M. Brückner, N. M. Budnev, A. V. Bulan, A. Vaidyanathan, R. Wischnewski, P. A. Volchugov, D. M. Voronin, A. R. Gafarov, O. A. Gress, T. I. Gress, O. G. Grishin, A. Yu. Garmashi, V. M. Grebenyuk, A. V. Grinyuk, A. N. Dyachok, D. P. Zhurov, A. V. Zagorodnikov, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, R. L. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. Chiavassa, M. Lavrova, A. A. Lagutin, Yu. E. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. L. Pakhorukov, A. Pan, M. I. Panasyuk, L. V. Pankov, A. A. Petrukhin, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, G. I. Rubtsov, E. V. Ryabov, Ya. I. Sagan, V. S. Samoliga, A. A. Silaev, A. Yu. Sidorenkov, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, L. G. Sveshnikova, Ya. V. Suvorkin, V. A. Tabolenko, A. V. Tanaev, B. A. Tarashansky, M. Yu. Ternovoy, L. G. Tkachev, M. Tluczykont, N. A. Ushakov, D. Horns, and I. V. Yashin
- Subjects
010302 applied physics ,010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,01 natural sciences - Published
- 2021
- Full Text
- View/download PDF
3. Experimental Complex TAIGA
- Author
-
N. Ushakov, N. B. Lubsandorzhiev, E. A. Kravchenko, Yu. Lemeshev, D. Chernykh, E. E. Korosteleva, Anatoly Lagutin, L. V. Pankov, A. Garmash, R. P. Kokoulin, A. V. Skurikhin, P. Volchugov, Andrey Sokolov, V. V. Prosin, D. A. Podgrudkov, A. L. Pakhorukov, Dmitry Chernov, M. Blank, A. Tanaev, L. G. Sveshnikova, L. G. Tkachev, E. A. Osipova, M. Slunechka, V.A. Tabolenko, Dieter Horns, M. Tluczykont, R. D. Monkhoev, I. I. Astapov, E. Popova, A. Chiavassa, A. Pushnin, M. Ternovoy, I. I. Yashin, A. N. Dyachok, Grigory Rubtsov, P. Bezyazykov, N. N. Kalmykov, D. Shipilov, M. Popesku, A. A. Petrukhin, A. Ivanova, Alexander Kryukov, Y. Sagan, A. Sidorenkov, Evgenii V Rjabov, V. Poleshchuk, D. Voronin, V. S. Ptuskin, Roman Raikin, B. A. Tarashchansky, Mikhail Panasyuk, O. A. Gress, V. Kiryukhin, A. Bulan, A. A. Grinyuk, V. A. Kozhin, V. V. Kindin, T. I. Gress, M. Brückner, R. R. Mirgazov, A. Pan, V. Samoliga, A. Vaidyanathan, Y. Kazarina, Oleg Fedorov, Dmitry Zhurov, A. Borodin, R. Mirzoyan, A. Porelli, A. Bonvech, K. G. Kompaniets, O. Grishin, Evgeny Postnikov, Aleksandr Gafarov, A. A. Silaev, A. V. Zagorodnikov, Bayarto Lubsandorzhiev, Y. Suvorkin, L. A. Kuzmichev, V. M. Grebenyuk, and R. Wischnewski
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,0103 physical sciences ,Taiga ,Astronomy ,010306 general physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Cherenkov radiation - Abstract
The astrophysical complex TAIGA (Tunka Advanced Instrument for cosmic-ray physics and Gamma-ray Astronomy), whose first phase is being completed in the Tunka valley 50 km from Lake Baikal, is described. Its research program, first results, and development prospects are discussed.
- Published
- 2020
- Full Text
- View/download PDF
4. Status of the TAIGA Experiment: From Cosmic-Ray Physics to Gamma Astronomy in Tunka Valley
- Author
-
Dmitry Chernov, A. V. Skurikhin, Andrey Sokolov, M. Slunecka, Grigory Rubtsov, N. N. Kalmykov, B. A. Tarashchansky, D. A. Podgrudkov, V. A. Poleschuk, Y. Suvorkin, P. Volchugov, A. L. Pakhorukov, Dieter Horns, N. M. Budnev, A. Tanaev, Roman Raikin, A. N. Dyachok, M. Tluczykont, A. A. Grinyuk, R. R. Mirgazov, A. Haungs, Evgeny Postnikov, N. B. Lubsandorzhiev, A. Pan, T. Marshalkina, Oleg Fedorov, V. Samoliga, V. S. Ptuskin, M. Kleifges, A. Chiavassa, Y. Sagan, R. Mirzoyan, A. Porelli, M. Brueckner, N. Ushakov, T. I. Gress, A. Borodin, V. Lenok, Aleksandr Gafarov, R. Togoo, A. Garmash, Dmitry Zhurov, A. A. Silaev, D. Kostyunin, L. G. Tkachev, A. V. Zagorodnikov, E. A. Osipova, V. Kiryuhin, E. V. Ryabov, Pavel Bezyazeekov, O. G. Grishin, D. Shipilov, A. Ivanova, E. Popova, O. A. Gress, L. G. Sveshnikova, A. Vaidyanathan, L. V. Pankov, B. K. Lubsandorzhiev, V. A. Kozhin, V. V. Kindin, M. Ternovoy, L. A. Kuzmichev, V. M. Grebenyuk, I. I. Astapov, R. Wischnewski, Mikhail Panasyuk, Frank G. Schröder, A. Pushnin, A. Bulan, A. Bonvech, K. G. Kompaniets, D. Voronin, V.A. Tabolenko, E. A. Kravchenko, D. Chernykh, E. E. Korosteleva, S. Malakhov, R. P. Kokoulin, A. A. Petrukhin, Yulia Kazarina, Ig. Yashin, Yu. Lemeshev, V. V. Prosin, Anatoly Lagutin, T. Huege, R. D. Monkhoev, Alexander Kryukov, and A. Sidorenkov
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Observatory ,0103 physical sciences ,Taiga ,Astronomy ,Cosmic ray ,Radiation ,010306 general physics ,Hybrid approach ,01 natural sciences ,Atomic and Molecular Physics, and Optics - Abstract
The importance and advantages of the hybrid approach developed within the TAIGA project for studying the high-energy section of the spectrum of gamma radiation in the Universe are discussed. The pilot complex of the TAIGA gamma observatory with an area of 1 km $${}^{2}$$ is briefly described along with the lines of its development, and the first results obtained on this basis are given.
- Published
- 2020
- Full Text
- View/download PDF
5. A Study of Atmospheric Radiation Flashes in the Near-Ultraviolet Region Using the TUS Detector aboard the Lomonosov Satellite
- Author
-
L. G. Tkachev, A.N. Senkovsky, I. V. Yashin, Vasily Petrov, Gali Garipov, M. Yu. Zotov, A. V. Shirokov, A.A. Botvinko, A. V. Tkachenko, Mikhail Panasyuk, O. A. Saprykin, V. M. Grebenyuk, A.E. Puchkov, Sergei A. Sharakin, Pavel Klimov, A. A. Grinyuk, M. V. Lavrova, and B. A. Khrenov
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Meteoroid ,Detector ,Aerospace Engineering ,Astronomy ,Astronomy and Astrophysics ,Cosmic ray ,Radiation ,medicine.disease_cause ,01 natural sciences ,law.invention ,Telescope ,Atmosphere ,Space and Planetary Science ,law ,0103 physical sciences ,medicine ,Ionosphere ,010303 astronomy & astrophysics ,Ultraviolet ,0105 earth and related environmental sciences - Abstract
Tracking Ultraviolet Setup (TUS) detector is a detector of ultraviolet (UV) radiation of the atmosphere in the wavelength range of 300–400 nm (near-ultraviolet) with high sensitivity (tens of photons emitted within the solid angle of 10–4 sr in 0.8 μs), which operated for a year and a half aboard the Lomonosov satellite. The TUS telescope had a multipurpose operational program, which made it possible to detect UV flashes from the shortest ones created by extensive air showers generated by cosmic rays to long ones, up to 1 s, created by meteors. Among these various phenomena, most often are flashes from lightning strikes, both directly creating a glow and causing the development of secondary discharges in the atmosphere, in the upper atmosphere and in the ionosphere. These discharges differ in both nature and phenomenology—in particular, they have different durations and luminosities.
- Published
- 2020
- Full Text
- View/download PDF
6. Mechanism of the Adhesive Interaction of Diazoquinone-Novolac Photoresist Films with Monocrystalline Silicon
- Author
-
A. N. Pyatlitski, V. S. Prosolovich, S. D. Brinkevich, R. L. Sverdlov, D. I. Brinkevich, and E. V. Grinyuk
- Subjects
inorganic chemicals ,Materials science ,Silicon ,010401 analytical chemistry ,Oxide ,chemistry.chemical_element ,02 engineering and technology ,Photoresist ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Monocrystalline silicon ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,Wafer ,Adhesive ,0210 nano-technology ,Boron ,Layer (electronics) ,Spectroscopy - Abstract
Fourier-transform infra-red spectroscopy with frustrated total internal reflection was used to study radiation-induced processes upon the implantation of boron and phosphorus ions into positive FP9120 diazoquinone-novolac photoresist films on silicon. Strengthening of the photoresist adhesion to monocrystalline silicon was found to be caused by the formation of ester linkages between hydroxyl groups on the surface of the silicon wafer oxide layer and carboxyl groups of 1-H-indene-3-carboxylic acid.
- Published
- 2020
- Full Text
- View/download PDF
7. Modification of Diazoquinone–Novolac Photoresist Films beyond the Region of Implantation of B+ Ions
- Author
-
E. V. Grinyuk, D. I. Brinkevich, S. D. Brinkevich, and V. S. Prosolovich
- Subjects
010302 applied physics ,chemistry.chemical_classification ,010304 chemical physics ,Double bond ,Radical ,Photoresist ,Photochemistry ,01 natural sciences ,Ion ,Ion implantation ,chemistry ,Unpaired electron ,Attenuated total reflection ,0103 physical sciences ,Molecule ,Physical and Theoretical Chemistry - Abstract
Diazoquinone–novolac photoresist FP9120 films of 1.0–2.5 μm in thickness with boron ions, implanted at an incident ion energy of 60 keV and a fluence of 5 × 1014–1 × 1016 cm−2, have been studied using attenuated total reflection (ATR) FTIR spectroscopy. It has been shown that ion implantation leads to the appearance in the layer beyond the range of ions of intense ATR bands with maxima at 2151 and 2115 cm−1 due to stretching vibrations of C=C=O cumulative double bonds formed as a result of denitrogenation of o‑naphthoquinone diazide. During implantation, a redistribution of intensities was observed between the maxima of the ATR bands due to the terminal methyl groups and methylene groups in favor of the latter. This may indicate radiation crosslinking of novolac resin molecules, involving radicals with the unpaired electron localized at the terminal methyl groups.
- Published
- 2020
- Full Text
- View/download PDF
8. Depth of the Maximum of Extensive Air Showers (EASes) and the Mean Mass Composition of Primary Cosmic Rays in the 1015–1018 eV Range of Energies, According to Data from the TUNKA-133 and TAIGA-HiSCORE Arrays for Detecting EAS Cherenkov Light in the Tunkinsk Valley
- Author
-
V. V. Prosin, I. I. Astapov, P. A. Bezyazeekov, A. N. Borodin, M. Brückner, N. M. Budnev, A. Bulan, A. Vaidyanathan, R. Wischnewski, P. Volchugov, D. Voronin, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, A. N. Dyachok, D. P. Zhurov, A. V. Zagorodnikov, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, V. A. Kozhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. Chiavassa, M. Lavrova, A. A. Lagutin, Yu. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. Pan, M. I. Panasyuk, L. V. Pankov, A. L. Pakhorukov, A. A. Petrukhin, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, G. I. Rubtsov, E. V. Ryabov, Ya. I. Sagan, V. S. Samoliga, L. G. Sveshnikova, A. Yu. Sidorenkov, A. A. Silaev, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, Y. Suvorkin, V. A. Tabolenko, A. Tanaev, B. A. Tarashansky, M. Ternovoy, L. G. Tkachev, M. Tluczykont, N. Ushakov, D. Horns, and I. I. Yashin
- Subjects
010302 applied physics ,010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,01 natural sciences - Published
- 2021
- Full Text
- View/download PDF
9. Monte Carlo Simulation of the TAIGA Hybrid Gamma-Ray Experiment
- Author
-
Evgeny Postnikov, L. G. Sveshnikova, and A. A. Grinyuk
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Monte Carlo method ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Cosmic ray ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Computational physics ,Computer Science::Computer Vision and Pattern Recognition ,0103 physical sciences ,High Energy Physics::Experiment ,010306 general physics ,Cherenkov radiation - Abstract
The TAIGA experiment (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy) combines heterogeneous arrays of imaging and non-imaging Cherenkov light detectors for registration of extensive air showers. Monte Carlo simulation of the whole detector response was carried out and is described in this article.
- Published
- 2020
- Full Text
- View/download PDF
10. Imaging Atmospheric Cherenkov Telescope for the TAIGA Observatory—JINR Participation
- Author
-
A. Pan, A. Borodin, Y. Sagan, L. G. Tkachev, A. A. Grinyuk, V. M. Grebenyuk, and R. Wischnevsky
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Gamma ray ,Astronomy ,Cosmic ray ,IACT ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,law.invention ,Telescope ,law ,Observatory ,0103 physical sciences ,010306 general physics ,Cherenkov radiation - Abstract
IACTs are one of the key parts of the TAIGA observatory and designed for study of gamma rays and charged cosmic rays in the energy range of 10 $${}^{13}{-}10^{18}$$ eV. The first IACT was designed and fabricated at the JINR workshop and has been operating since 2016 in the Tunka valley. The second one has been assembled there at September 2018 and the production of the third one is in progress to be transported to the Tunka valley in August 2019. The R&D to fabricate focusing glass mirrors directly in JINR is underway. The report presents the TAIGA IACT main characteristics and the results of the comparison between the JINR glass mirrors and composite mirrors (Media Lario company, Italy).
- Published
- 2020
- Full Text
- View/download PDF
11. The TUS Space Photodetector Relative Calibration in Flight
- Author
-
L. G. Tkachev, A. A. Grinyuk, M. V. Lavrova, and A. V. Tkachenko
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Musical tuning ,Photodetector ,Radiation ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,law.invention ,Atmosphere ,Telescope ,Optics ,law ,0103 physical sciences ,Calibration ,Satellite ,Ultra-high-energy cosmic ray ,010306 general physics ,business - Abstract
The TUS experiment is aimed to study the energy spectrum and arrival direction of Ultra High Energy Cosmic Rays at E ∼ 100 EeV from the space orbit by measuring the fluorescence radiation of the Extensive Atmospheric Shower in the atmosphere. It is the first orbital telescope aimed for such measurements and is taking data since April 28, 2016. During the first turns of operation ∼20% PMTs were broken due to the HV tuning system failure. For the same reason, the properties of the remaining PMTs are changed. Relative calibration of PMT gains in flight was done and presented based on analyzing TUS background data itself. A reconstruction of EAS arrival directions is done using the relative calibration coefficients.
- Published
- 2019
- Full Text
- View/download PDF
12. Energy Spectrum of Primary Cosmic Rays, According to TUNKA-133 and TAIGA-HiSCORE EAS Cherenkov Light Data
- Author
-
Evgeny Postnikov, Yu. Lemeshev, Mihai Popescu, Roman Raikin, M. Slunecka, Bayarto Lubsandorzhiev, O. G. Grishin, S. Kiryuhin, K. G. Kompaniets, A. A. Grinyuk, E. A. Osipova, L. A. Kuzmichev, V. M. Grebenyuk, Pavel Bezyazeekov, V. Boreyko, A. V. Tkachenko, Dmitry Zhurov, L. V. Pankov, Andrey Sokolov, N. V. Gorbunov, A. Chiavassa, V. Prosin, L. G. Sveshnikova, M. Kunnas, Anatoly Lagutin, A. Pakhorukov, L. G. Tkachev, N. M. Budnev, A. Yu. Sidorenkov, A. A. Petrukhin, V. Samoliga, Aleksey Zagorodnikov, R. Wischnewski, R. R. Mirgazov, V. A. Poleschuk, A. Pushnin, E.G. Popova, Oleg Fedorov, Valery Zurbanov, Aleksandr Gafarov, B. M. Sabirov, A. V. Skurikhin, A. A. Silaev, A. Borodin, V.A. Tabolenko, P. Kirilenko, Evgenii V Rjabov, I. I. Yashin, Y. Kazarina, A. Yu. Garmash, I. I. Astapov, R. D. Monkhoev, T. I. Gress, Dieter Horns, A. N. Dyachok, M. Tluczykont, Grigory Rubtsov, N. N. Kalmykov, N. B. Lubsandorzhiev, C. Spiering, M. Brueckner, V. S. Ptuskin, A. Ivanova, Yu. A. Semeney, O. A. Gress, V. A. Kozhin, V. V. Kindin, Y. Sagan, V. V. Lenok, A. Porelli, E. A. Kravchenko, E. E. Korosteleva, R. P. Kokoulin, B.A. Tarashansky, Mikhail Panasyuk, and R. Mirzoyan
- Subjects
010302 applied physics ,Physics ,Range (particle radiation) ,010308 nuclear & particles physics ,Hadron ,General Physics and Astronomy ,Flux ,Cosmic ray ,01 natural sciences ,Spectral line ,Nuclear physics ,Primary (astronomy) ,0103 physical sciences ,Energy spectrum ,Cherenkov radiation - Abstract
The Tunka-133 Cherenkov complex for recording extensive air showers (EAS) collected data over seven winters from 2009 to 2017. The differential energy spectra of all particles was acquired in the 6 × 1015–3 × 1018 eV range of energies over 2175 h. The TAIGA-HiSCORE complex is continually being expanded and upgraded. Data acquired by 30 first-line stations over 35 days during the period 2017–2018 is analyzed in this work. As at the Tunka-133 setup, the primary particle energies above 1015 eV are measured using the density of the Cherenkov light flux at a distance of 200 m from a shower’s axis. Data on lower energies are collected by determining the energy of the light flux near a shower’s axis. This results in a spectrum of 2 × 1014–1017 eV. The combined spectrum for the two systems covers a range of 2 × 1014–2 × 1018 eV.
- Published
- 2019
- Full Text
- View/download PDF
13. Monte Carlo Simulation of the TAIGA Experiment
- Author
-
R. D. Monkhoev, T. I. Gress, Y. Sagan, R. R. Mirgazov, L. A. Kuzmichev, V. M. Grebenyuk, Oleg Fedorov, M. Brueckner, N. B. Lubsandorzhiev, A. V. Skurikhin, A. Borodin, A. Ivanova, Yu. Lemeshev, E.G. Popova, V.A. Tabolenko, Dmitry Zhurov, B.A. Tarashansky, S. Kiryuhin, A. V. Tkachenko, Mikhail Panasyuk, Dieter Horns, M. Tluczykont, V. S. Ptuskin, A. Pushnin, Roman Raikin, O. G. Grishin, Anatoly Lagutin, A. Chiavassa, A. A. Petrukhin, R. Mirzoyan, V. Prosin, Evgeny Postnikov, Valery Zurbanov, C. Spiering, A. A. Grinyuk, Yulia Kazarina, M. Kunnas, O. A. Gress, L. G. Sveshnikova, A. Pakhorukov, R. Wischnewski, L. G. Tkachev, A. N. Dyachok, V. A. Poleschuk, M. Slunecka, Bayarto Lubsandorzhiev, V. A. Kozhin, Andrey Sokolov, I. I. Astapov, M. Popescu, A. Yu. Garmash, E. A. Kravchenko, Evgenii V Rjabov, B. M. Sabirov, E. E. Korosteleva, V. V. Kindin, I. I. Yashin, Grigory Rubtsov, N. N. Kalmykov, R. P. Kokoulin, L. V. Pankov, N. M. Budnev, P. Kirilenko, V. V. Lenok, A. Porelli, Yu. A. Semeney, V. Samoliga, E. A. Osipova, Pavel Bezyazeekov, V. Boreyko, N. V. Gorbunov, Aleksandr Gafarov, A. A. Silaev, Aleksey Zagorodnikov, K. G. Kompaniets, and A. Yu. Sidorenkov
- Subjects
010302 applied physics ,Physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,General Physics and Astronomy ,Cosmic ray ,01 natural sciences ,Software ,Air shower ,Observatory ,0103 physical sciences ,business ,Energy (signal processing) ,Cherenkov radiation ,Remote sensing - Abstract
The TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy) experiment aims at observing gamma-rays in the energy range from 1 TeV to several 100 TeV. The operation of the observatory is based on a new hybrid approach that combines imaging air Cherenkov telescopes (IACTs) and wide-angle Cherenkov detectors (TAIGA-HiSCORE) for measuring times of extensive air shower (EAS) light front arrival. Monte Carlo simulations are compared to real data to determine the performance of the detector setup. Dedicated software and algorithms are described, model parameters are given, and an overview of the current status of model-based performance studies is presented.
- Published
- 2019
- Full Text
- View/download PDF
14. The Search for and Study of EAS Candidates in the TUS Orbital Experiment
- Author
-
A. V. Tkachenko, L. G. Tkachev, A. A. Grinyuk, and M. V. Lavrova
- Subjects
010302 applied physics ,Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,General Physics and Astronomy ,Astronomy ,Cosmic ray ,Tracking (particle physics) ,01 natural sciences ,Orbit ,0103 physical sciences ,Satellite ,Astrophysics::Earth and Planetary Astrophysics ,Cherenkov radiation - Abstract
The TUS (Tracking Ultraviolet Setup) detector aboard the Lomonosov satellite was launched into a Sun-synchronous orbit with an altitude of ~500 km on April 28, 2016. The main purpose of the TUS orbital experiment is to search for ultra-high energy cosmic rays (UHECRs) with Е > 70 EeV by measuring the fluorescence and Cherenkov radiation of extensive air showers (EASes) in the Earth’s atmosphere. The design and operating principles of the TUS detector are briefly described. A multilevel algorithm developed to search for and reconstruct EAS events (candidates) in the region of UHECRs is used to analyze the TUS data. Preliminary results from the TUS in orbit, including the results from the search for and study of identified EAS candidates, are presented.
- Published
- 2019
- Full Text
- View/download PDF
15. TAIGA: A Complex of Hybrid Systems of Cooperating Detectors for Gamma Astronomy and Cosmic Ray Physics in the Tunka Valley
- Author
-
Evgeny Postnikov, Roman Raikin, O. A. Gress, A. A. Grinyuk, V. A. Kozhin, V. V. Kindin, V. Samoliga, V. A. Poleschuk, M. Slunecka, Bayarto Lubsandorzhiev, A. Chiavassa, R. R. Mirgazov, V. S. Ptuskin, R. Mirzoyan, A. Yu. Garmash, V. Prosin, L. A. Kuzmichev, V. M. Grebenyuk, Anatoly Lagutin, Oleg Fedorov, M. Kunnas, L. V. Pankov, E. A. Osipova, Pavel Bezyazeekov, A. A. Petrukhin, Aleksandr Gafarov, Mihai Popescu, R. Wischnewski, A. A. Silaev, M. Tluczykont, A. V. Skurikhin, A. Borodin, Mikhail Panasyuk, R. D. Monkhoev, T. I. Gress, Aleksey Zagorodnikov, A. V. Tkachenko, Dieter Horns, N. B. Lubsandorzhiev, N. V. Gorbunov, Dmitry Zhurov, A. Ivanova, L. G. Sveshnikova, A. Tanaev, I. I. Yashin, N. I. Karpov, E.G. Popova, O. G. Grishin, A. N. Dyachok, R. Nakhtigal, A. Pakhorukov, L. G. Tkachev, V.A. Tabolenko, Y. Sagan, K. G. Kompaniets, A. Porelli, Valery Zurbanov, A. Pushnin, E. A. Kravchenko, A. Yu. Sidorenkov, E. E. Korosteleva, S. Kiryuhin, R. P. Kokoulin, V. P. Sulakov, B.A. Tarashansky, Y. Kazarina, P. Kirilenko, Andrey Sokolov, N. M. Budnev, V. V. Lenok, Grigory Rubtsov, N. N. Kalmykov, C. Spiering, and I. I. Astapov
- Subjects
010302 applied physics ,COSMIC cancer database ,010308 nuclear & particles physics ,Observatory ,0103 physical sciences ,Detector ,Taiga ,Gamma ray detectors ,General Physics and Astronomy ,Astronomy ,Cosmic ray ,Radiation ,01 natural sciences - Abstract
The relevance and benefits of the new TAIGA gamma observatory complex in the Tunka Valley (50 km from Lake Baikal) are discussed. The main aim of the TAIGA installation is to study high-energy gamma radiation and search for cosmic pevatrons. The first series of gamma stations was commissioned in 2019 and covers an area of 1 km2. Its expected integral gamma radiation sensitivity at an energy of 100 TeV over 300 h of source monitoring is (2–5) × 10−13 TeV cm−2 s−1. It is planned to expand the effective area of TAIGA gamma observation to 10 km2 in the future.
- Published
- 2019
- Full Text
- View/download PDF
16. Application of New Approximations of the Lateral Distribution of EAS Cherenkov Light in the Atmosphere
- Author
-
R. R. Mirgazov, V. A. Poleschuk, N. B. Lubsandorzhiev, Oleg Fedorov, A. Pakhorukov, L. G. Tkachev, Evgeny Postnikov, A. V. Tkachenko, M. Slunecka, Bayarto Lubsandorzhiev, A. Borodin, Andrey Sokolov, E.G. Popova, O. A. Gress, L. G. Sveshnikova, Y. Sagan, R. D. Monkhoev, T. I. Gress, E. A. Osipova, V. V. Lenok, A. N. Dyachok, P. S. Kirilenko, O. G. Grishin, Pavel Bezyazeekov, V. Boreyko, M. Tluczykont, V. A. Kozhin, V. V. Kindin, K. G. Kompaniets, A. V. Skurikhin, R. Nachtigall, A. Porelli, R. Mirzoyan, A. Pushnin, L. V. Pankov, Valery Zurbanov, N. V. Gorbunov, B.A. Tarashansky, A. A. Lagutin, Roman Raikin, Aleksandr Gafarov, I. I. Yashin, V. P. Sulakov, M. Popesku, Dieter Horns, A. Sidorenkov, A. A. Grinyuk, A. A. Silaev, Yu. A. Semeney, V. Samoliga, C. Spiering, Mikhail Panasyuk, Aleksey Zagorodnikov, M. Kunnas, V. S. Ptuskin, A. Chiavassa, E. A. Kravchenko, V. Prosin, A. Ivanova, N. I. Karpov, R. Wischnewski, L. A. Kuzmichev, V. M. Grebenyuk, A. A. Petrukhin, A. Sh. M. Elshoukrofy, Yulia Kazarina, N. M. Budnev, S. Kiryuhin, V.A. Tabolenko, E. E. Korosteleva, A. Garmash, Hussein A. Motaweh, R. P. Kokoulin, I. I. Astapov, Grigory Rubtsov, and N. N. Kalmykov
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Probability density function ,01 natural sciences ,Electromagnetic radiation ,Atomic and Molecular Physics, and Optics ,Computational physics ,Massless particle ,Distribution function ,0103 physical sciences ,Range (statistics) ,010303 astronomy & astrophysics ,Cherenkov radiation - Abstract
A new knee-like approximation of the lateral distribution function (LDF) of EAS Cherenkov light in the 30–3000 TeV energy range was proposed and tested with simulated showers in our earlier studies. This approximation fits the LDFs of individual showers accurately for all types of primary particles gamma-rays, protons, and nuclei) and is suitable for reconstructing the shower core, determining the energy, and separating gamma-induced showers from hadron-induced ones. In the present study, the knee-like fitting function is used to determine the parameters of real showers detected by TAIGA-HiSCORE. It is demonstrated that this approximation characterizes properly all types of individual LDFs of experimental events in the 300–1000 TeV range. The accuracy of fit is governed by fluctuations intrinsic to the process of measurement of the Cherenkov photon density. The probability density function of these fluctuations was reconstructed and introduced into simulations. Certain useful methodical applications of the knee-like approximation are con-sidered, and the possibility of shower sorting into nuclei groups is examined. The extensive statistical coverage and detailed LDF measurement data of HiSCORE have provided the first opportunity to examine in depth the LDF of Cherenkov radiation in the 300–1000 TeV range.
- Published
- 2018
- Full Text
- View/download PDF
17. Геоінформаційна інвентаризація, оцінювання стану та пропозиції щодо озеленення та благоустрою території парку ім. Івана Франка у Чорткові
- Author
-
S. M. Pidkhovna, D. I. Bidolakh, V. S. Kuzyovych, Yu. G. Grinyuk, and O. B. Timanska
- Subjects
010302 applied physics ,Geographic information system ,business.industry ,ved/biology ,ved/biology.organism_classification_rank.species ,квадрокоптер ,ландшафтно-планувальний аналіз ,моделювання ландшафтів ,020206 networking & telecommunications ,02 engineering and technology ,Vegetation ,Object (computer science) ,01 natural sciences ,Shrub ,Tree (data structure) ,Gis database ,Geography ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Global Positioning System ,General Earth and Planetary Sciences ,lcsh:SD1-669.5 ,lcsh:Forestry ,Digital elevation model ,business ,Cartography ,General Environmental Science - Abstract
The aim of research is to study the phyto and sanitary conditions of green space and the development for its improvement to ensure the appropriate level of further functioning of the park in Chortkiv. The inventory of green space was made in accordance with existing instruction by Technical Greenery Inventory. Plants were determined by conventional methods. To characterize the state of the plant taxations we defined the following parameters: the diameter and height of trees as well as different methods concerning the status of the vitality of plants. The conventional method was used to determine the defectiveness of trees. The criteria for evaluation of the ecological and decorative wood characteristics were as folows: height, trunk diameter, crown diameter and evaluation of vitality. It was used by traditional and modern instruments. The modern were tools were as follows: global positioning device (GPS), geographic information systems (GIS), and methods of remote sensing (on the basis of an orthophotoplan which was obtained with the help of a quadcopter Phantom 4). The data on the location of each tree received via GPS Garmin GPS Map 64S with its subsequent adjustments based on RS Landsat in GIS ArcGis 9.2. After that, GIS database of trees and shrubs was obtained, including coordinates of tree location combined with the information about species, phytosanitary and fundamental taxation features. This enables storing it in a digital format. It gives us opportunity of automated study of the data and displaying them in the form of discrete information on a map. Using these capabilities and digital elevation models, we have created the 3-dimensional digital model of the territory in the license version of RLA2014. After that, to the program layout-creation we put the trees and shrub vegetation according to their location, species and age composition with using of existing GIS database information. The park conditions were analyzed and evaluated considering the phytosanitary, productive and aesthetic conditions. The types of garden landscapes of the object were identified. The analysis of the phytosanitary state of green plantations in Chortkiv Park showed that the vast majority of trees belonged to the category of "good" and almost a quarter of the trees needed to be sanitized or removed.
- Published
- 2018
18. TAIGA Gamma Observatory: Status and Prospects
- Author
-
M. Kunnas, Roman Raikin, Aleksey Zagorodnikov, A. A. Grinyuk, K. G. Kompaniets, V. Samoliga, A. V. Skurikhin, Evgeny Postnikov, A. N. Dyachok, Y. Sagan, B.A. Tarashansky, S. Kiryuhin, L. A. Kuzmichev, R. Wischnewski, V. M. Grebenyuk, L. V. Pankov, M. Slunecka, N. B. Lubsandorzhiev, Bayarto Lubsandorzhiev, A. V. Tkachenko, R. D. Monkhoev, T. I. Gress, V. A. Poleschuk, M. Popesku, L. G. Sveshnikova, V. S. Ptuskin, R. Nachtigall, E. A. Osipova, A. Chiavassa, V. Prosin, N. I. Karpov, O. A. Gress, M. Tluczykont, Pavel Bezyazeekov, V. Boreyko, O. G. Grishin, V. A. Kozhin, A. Pakhorukov, V. V. Kindin, L. G. Tkachev, Aleksandr Gafarov, N. V. Gorbunov, A. A. Silaev, Valery Zurbanov, A. Pushnin, R. R. Mirgazov, Oleg Fedorov, A. Borodin, E. A. Kravchenko, A. A. Petrukhin, E. E. Korosteleva, A. Sh. M. Elshoukrofy, A. Ivanova, Yulia Kazarina, A. Garmash, R. P. Kokoulin, V.A. Tabolenko, E.G. Popova, V. P. Sulakov, Yu. A. Semeney, A. D. Horns, V. V. Lenok, A. Porelli, P. Kirilenko, C. Spiering, Andrey Sokolov, I. I. Yashin, A. Sidorenkov, Anatoly Lagutin, Grigory Rubtsov, N. N. Kalmykov, I. I. Astapov, N. M. Budnev, R. Mirzoyan, and Mikhail Panasyuk
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,IACT ,Cosmic ray ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Particle detector ,Observatory ,0103 physical sciences ,Measuring instrument ,010303 astronomy & astrophysics ,Cherenkov radiation - Abstract
Over the past few years, the TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy) observatory has been being deployed in the Tunka Valley, Republic of Buryatia. It is designed for studying gamma rays of energy above 30 TeV and performing searches for sources of galactic cosmic rays with energies in the vicinity of 1 PeV, which is an energy region around the classic knee in the cosmic-ray energy spectrum. The first phase of the observatory will be situated at a distance of about 50 km from Lake Baikal at the site of the Tunka-133 array. The TAIGA gamma observatory will include a network of 500 wide-angle (0.6 sr) Cherenkov detectors (TAIGA-HiSCORE array) and up to 16 atmospheric Cherenkov telescopes (ACT) designed for analyzing the EAS images (imaging atmospheric Cherenkov telescopes, or IACT) and positioned within an area of 5 km2. The observatory will also include muon detectors of total area 2000 m2 distributed over an area of 1 km2. Within the next three years, it is planned to enhance the area of the TAIGA-HiSCORE array by a factor of four—from 0.25 km2 to 1 km2; to supplement the existing IACT with two new ones; and to deploy new muon detectors with a total coverage of 200 m2. The structure of the new observatory is described along with the data analysis techniques used. The most interesting physical results are presented, and the research program for the future is discussed.
- Published
- 2018
- Full Text
- View/download PDF
19. The TAIGA Experiment: From Cosmic Ray Physics to Gamma Astronomy in the Tunka Valley
- Author
-
L. V. Pankov, Evgeny Postnikov, E. A. Osipova, Yu. Lemeshev, V. S. Ptuskin, A. Pushnin, Pavel Bezyazeekov, V.A. Tabolenko, S. Kiryuhin, L. A. Kuzmichev, V. M. Grebenyuk, Yu. A. Semeney, V. Prosin, M. Slunecka, Bayarto Lubsandorzhiev, B.A. Tarashansky, V. A. Poleschuk, Mikhail Panasyuk, E. I. Kravchenko, N. B. Lubsandorzhiev, N. V. Gorbunov, K. G. Kompaniets, Grigory Rubtsov, N. N. Kalmykov, P. Kirilenko, E. E. Korosteleva, Dmitriy Kostunin, R. Mirzoyan, O. A. Gress, R. P. Kokoulin, A. Pakhorukov, Y. Kazarina, L. G. Tkachev, V. A. Kozhin, A. A. Petrukhin, V. V. Kindin, V. V. Lenok, E.G. Popova, V. Samoliga, A. Ivanova, A. Yu. Sidorenkov, N. M. Budnev, Aleksey Zagorodnikov, A. O. Skurikhin, Andrey Sokolov, I. I. Astapov, A. A. Grinyuk, Y. Sagan, A. V. Boreyko, A. N. Dyachok, L. G. Sveshnikova, A. Yu. Garmash, Dmitry Zhurov, O. G. Grishin, R. D. Monkhoev, T. I. Gress, A. V. Tkachenko, E. V. Ryabov, Aleksandr Gafarov, A. A. Silaev, R. R. Mirgazov, Valery Zurbanov, Oleg Fedorov, A. Borodin, B. M. Sabirov, and I. I. Yashin
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Electron ,Radiation ,01 natural sciences ,Observatory ,0103 physical sciences ,010303 astronomy & astrophysics ,Cherenkov radiation - Abstract
The article presents the relevance and advantages of the new gamma observatory TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy), which is being constructed in the Tunka Valley 50 km from Lake Baikal. Various detectors of the six TAIGA gamma observatory arrays register the Cherenkov and radio radiation, as well as the electron and muon components of EAS. The primary objective of the TAIGA gamma observatory is to study the high-energy part of the gamma-ray spectrum, in particular, in order to search for Galactic PeVatrons. The energy, direction, and position of the EAS axis are reconstructed in the observatory based on the data of the wide-angle Cherenkov detectors of the TAIGA-HiSCORE experiment. Taking into account this information, the gamma quanta are distinguished from the hadron background using the data obtained by the muon detectors and telescopes that register the EAS image in the Cherenkov light. In this hybrid mode of operation, the atmospheric Cherenkov telescopes can operate in the mono-mode, and the distance between them can be increased to 800–1000 m, which makes it possible to construct an array with an area of 5 km2 and more at relatively low cost and in a short time. By 2019, the first stage of the gamma observatory with an area of 1 km2 will be constructed; its expected integral sensitivity for detecting the gamma radiation with an energy of 100 TeV at observation of the source for 300 hours will be approximately $$2 \times 5$$ 10–13 TeV cm–2s–1.
- Published
- 2018
- Full Text
- View/download PDF
20. The IACT Optical System of the TAIGA Observatory Complex
- Author
-
A. Borodin, Y. Sagan, A. A. Grinyuk, A. N. Shalyugin, L. G. Tkachev, A. Pan, and V. M. Grebenyuk
- Subjects
010302 applied physics ,Physics ,010308 nuclear & particles physics ,business.industry ,Gamma ray ,General Physics and Astronomy ,Field of view ,IACT ,01 natural sciences ,law.invention ,Telescope ,Optics ,Observatory ,law ,0103 physical sciences ,Calibration ,Focal length ,business ,Cherenkov radiation - Abstract
TAIGA (Tunka Advanced Instrument for Gamma Astronomy) is designed for studying gamma rays and charged cosmic particles in the energy range of 1013–1018 eV. The staff of the Joint Institute for Nuclear Research is now working on the design and fabrication of Cherenkov telescope elements (IACTs). The IACT field of view is ~10° × 10°, due to a Davis–Cotton optical layout with 34 mirrors 0.60 m in diameter, a focal length of 4.75 m, and 560 XP1911 PMT camera. The first IACT was commissioned in 2016 in the Tunka Valley. The second IАСТ is now being prepared for operation. The steps of PMT alignment and the results from its calibration are thoroughly described along with the fabrication of a mirror and its optical parameters. The technique for adjusting the mirror is presented as well. It replaces the conventional visual assessment of the image with pattern recognition software that is applied to a screen shot of the calibration source. This software ensures highly precise calculations of the mirror’s adjusting screws to obtain a correct image.
- Published
- 2019
- Full Text
- View/download PDF
21. Scintillation detectors for the TAIGA experiment
- Author
-
Evgeny Postnikov, Yu. A. Semeney, P. Kirilenko, V.A. Tabolenko, V. V. Lenok, Bayarto Lubsandorzhiev, A. Porelli, L. A. Kuzmichev, Aleksandr Gafarov, M. Kunnas, V. M. Grebenyuk, D. Zhurov, Andrey Sokolov, R. R. Mirgazov, E. A. Kravchenko, Valery Zurbanov, A. A. Petrukhin, Aleksey Zagorodnikov, A. A. Grinyuk, A. Chiavassa, V. Prosin, Mikhail Panasyuk, E. E. Korosteleva, B.A. Tarashansky, A. A. Silaev, V. Samoliga, A. Garmash, R. P. Kokoulin, M. Brueckner, Yulia Kazarina, R. D. Monkhoev, T. I. Gress, E. A. Osipova, L. G. Sveshnikova, V. A. Poleschuk, R. Mirzoyan, A. V. Skurikhin, Oleg Fedorov, Pavel Bezyazeekov, A. Ivanova, R. Nachtigall, A. Pakhorukov, L. G. Tkachev, N. M. Budnev, Yu. Lemeshev, E.G. Popova, N. V. Gorbunov, Dieter Horns, M. Tluczykont, K. G. Kompaniets, I. I. Astapov, A. Borodin, S. Kiryuhin, Grigory Rubtsov, N. N. Kalmykov, O. Grishin, L. V. Pankov, A. N. Dyachok, M. V. Lavrova, A. Vaidyanathan, C. Spiering, O. A. Gress, V. A. Kozhin, V. V. Kindin, Evgenii V Rjabov, R. Wischnewski, M. Popesku, V. Slunecka, V. S. Ptuskin, N. B. Lubsandorzhiev, B. M. Sabirov, I. I. Yashin, A. Sidorenkov, A. Pushnin, and Y. Sagan
- Subjects
Physics ,Nuclear and High Energy Physics ,Scintillation ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Detector ,Scintillator ,Wavelength shifter ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,0103 physical sciences ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Instrumentation ,Remote sensing - Abstract
It is planned that new TAIGA-Muon detectors will complement the existing Tunka-GRANDE facility of scintillation detectors of the TAIGA gamma-observatory in the Tunka valley, Russia. The new design of scintillation detector with wavelength shifting bars and PMTs is developed. The first prototype of the counter was installed and tested using infrastructure of the Tunka-GRANDE installation in 2017. The mass production of counters has begun in 2018 at the Novosibirsk State University.
- Published
- 2019
- Full Text
- View/download PDF
22. Development of a robotic complex for hybrid plasma-arc welding of thin-walled structures
- Author
-
A.A. Babich, Shanguo Han, V.Yu. Khaskin, Ntuu «Igor Sikorsky Kpi» Pobedi Prosp., Kiev, Ukraine, Volodymyr N. Sydorets, A.A. Grinyuk, and V.N. Korzhik
- Subjects
010302 applied physics ,0209 industrial biotechnology ,Plasma arc welding ,020901 industrial engineering & automation ,Materials science ,0103 physical sciences ,Thin walled ,02 engineering and technology ,Composite material ,01 natural sciences - Published
- 2017
- Full Text
- View/download PDF
23. Development of automated equipment for manufacturing 3D metal products based on additive technologies
- Author
-
V.I. Tkachuk, V.Yu. Khaskin, Sviatoslav Peleshenko, Ntuu «Igor Sikorsky Kpi» Pobedi Prosp., Kiev, Ukraine, A.A. Grinyuk, V.N. Korzhik, and A.N. Vojtenko
- Subjects
010302 applied physics ,Materials science ,0103 physical sciences ,02 engineering and technology ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,Manufacturing engineering - Published
- 2017
- Full Text
- View/download PDF
24. Comparative evaluation of methods of arc and hybrid plasma-arc welding of aluminum alloy 1561 using consumable electrode
- Author
-
V.N. Korzhik, A.A. Grinyuk, O.L. Mikhoduj, V.Yu. Khaskin, A.A. Babich, and N.A. Pashchin
- Subjects
010302 applied physics ,0209 industrial biotechnology ,Materials science ,Filler metal ,Gas tungsten arc welding ,Metallurgy ,Shielded metal arc welding ,02 engineering and technology ,Welding ,01 natural sciences ,Gas metal arc welding ,law.invention ,Plasma arc welding ,020901 industrial engineering & automation ,law ,0103 physical sciences ,Electrode ,Arc welding - Published
- 2017
- Full Text
- View/download PDF
25. The orbital TUS detector simulation
- Author
-
I. V. Yashin, A. V. Tkachenko, L. G. Tkachev, B. A. Khrenov, Pavel Klimov, A. V. Shirokov, V. M. Grebenyuk, M. V. Lavrova, S. A. Sharakin, Mikhail Panasyuk, and A. A. Grinyuk
- Subjects
Physics ,010308 nuclear & particles physics ,business.industry ,Detector ,Photodetector ,Astronomy and Astrophysics ,Concentrator ,01 natural sciences ,Front and back ends ,Atmosphere ,Optics ,0103 physical sciences ,Orbit (dynamics) ,Satellite ,business ,010303 astronomy & astrophysics ,Energy (signal processing) - Abstract
The TUS space experiment is aimed at studying energy and arrival distribution of UHECR at E > 7 × 1019 eV by using the data of EAS fluorescent radiation in atmosphere. The TUS mission was launched at the end of April 2016 on board the dedicated “Lomonosov” satellite. The TUSSIM software package has been developed to simulate performance of the TUS detector for the Fresnel mirror optical parameters, the light concentrator of the photo detector, the front end and trigger electronics. Trigger efficiency crucially depends on the background level which varies in a wide range: from 0.2 × 106 to 15 × 106 ph/( m 2 μ s sr) at moonless and full moon nights respectively. The TUSSIM algorithms are described and the expected TUS statistics is presented for 5 years of data collection from the 500 km solar-synchronized orbit with allowance for the variability of the background light intensity during the space flight.
- Published
- 2017
- Full Text
- View/download PDF
26. The TAIGA-HiSCORE array prototype: Status and first results
- Author
-
I. I. Astapov, N. S. Barbashina, A. G. Bogdanov, V. Boreyko, N. M. Budnev, R. Wischnewski, A. R. Gafarov, V. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, N. Gorbunov, A. N. Dyachok, S. N. Epimakhov, A. V. Zagorodnikov, V. L. Zurbanov, A. L. Ivanova, Y. A. Kazarina, N. N. Kalmykov, N. I. Karpov, V. V. Kindin, S. N. Kiryuhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. Kravchenko, M. Kunnas, L. A. Kuzmichev, A. Chiavassa, V. V. Lenok, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, R. Nachtigall, A. L. Pakhorukov, E. A. Osipova, M. I. Panasyuk, L. V. Pankov, A. A. Petrukhin, M. Popescu, A. Porelli, A. A. Pushnin, V. A. Poleschuk, E. G. Popova, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, G. I. Rubtsov, V. S. Samoliga, Y. A. Semeney, A. A. Silaev, A. V. Skurikhin, L. G. Sveshnikova, A. Sokolov, V. A. Tabolenko, B. A. Tarashchansky, L. G. Tkachev, A. V. Tkachenko, M. Tluczykont, O. L. Fedorov, D. Horns, C. Spiering, K. Yurin, and I. I. Yashin
- Subjects
010308 nuclear & particles physics ,Observatory ,0103 physical sciences ,Taiga ,Gamma ray ,General Physics and Astronomy ,010303 astronomy & astrophysics ,01 natural sciences ,Geology ,Remote sensing - Abstract
The design for the TAIGA-HiSCORE array, a part of the TAIGA Gamma Ray Observatory, is considered. The observatory is being constructed in the Tunka Valley, 50 km from Lake Baikal. Preliminary results obtained using the first 28 optical stations of the array are presented.
- Published
- 2017
- Full Text
- View/download PDF
27. Cherenkov EAS arrays in the Tunka astrophysical center: From Tunka-133 to the TAIGA gamma and cosmic ray hybrid detector
- Author
-
R. R. Mirgazov, A. Chiavassa, V. Prosin, Oleg Fedorov, A. Borodin, L. G. Sveshnikova, A. V. Skurikhin, Evgeny Postnikov, E.G. Popova, O. G. Grishin, Dieter Horns, Martin Tluczykont, M. Slunecka, D. Zhurov, Bayarto Lubsandorzhiev, V.A. Tabolenko, A. V. Tkachenko, N. B. Lubsandorzhiev, A. Grinyuk, E. A. Kravchenko, V. Samoliga, E. A. Osipova, K. G. Kompaniets, Razmik Mirzoyan, E. E. Korosteleva, V. Kiryuhin, Pavel Bezyazeekov, Alexander Kryukov, A. Sidorenkov, A. Garmash, Valery Zurbanov, Aleksandr Gafarov, R. P. Kokoulin, Grigory Rubtsov, N. N. Kalmykov, A. A. Silaev, A. Pan, A. A. Petrukhin, Aleksey Zagorodnikov, M. Brückner, R. D. Monkhoev, T. I. Gress, A. Pushnin, Anatoly Lagutin, D. Voronin, E. V. Ryabov, Victor Grebenyuk, L. Tkachev, A. Pakharukov, I. I. Astapov, Roman Raikin, Ralf Wischnewski, L. A. Kuzmichev, V. V. Lenok, A. Porelli, Yu. A. Semeney, P. Kirilenko, A. N. Dyachok, Ch. Spiering, N. Ushakov, L. V. Pankov, Y. Sagan, I. V. Yashin, M. Popesku, V. S. Ptuskin, O. A. Gress, V. A. Kozhin, V. V. Kindin, V. A. Poleschuk, Mikhail Panasyuk, Y. Kazarina, B.A. Tarashansky, Andrey Sokolov, and N. M. Budnev
- Subjects
Physics ,Nuclear and High Energy Physics ,Gamma-ray astronomy ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Aperture ,Cosmic rays ,EAS Cherenkov light array ,Energy spectrum ,IACT ,Detector ,Gamma ray ,Astronomy ,Cosmic ray ,01 natural sciences ,7. Clean energy ,13. Climate action ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation ,Cherenkov radiation - Abstract
One of the most informative methods of cosmic ray studies is the detection of Cherenkov light from extensive air showers (EAS). The primary energy reconstruction is possible by using the Earth’s atmosphere as a huge calorimeter . The EAS Cherenkov light array Tunka-133, with ∼ 3 km 2 geometrical area, is taking data since 2009. Tunka-133 is located in the Tunka Astrophysical Center at ∼ 50 km west of Lake Baikal. This array allows us to perform a detailed study of the energy spectrum and the mass composition in the energy range from 6 ⋅ 1 0 15 eV to 1 0 18 eV . Most of the ongoing efforts are focused on the construction of the first stage of the detector TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy). The latter is designed for the study of gamma rays and charged cosmic rays in the energy range of 1 0 13 eV – 1 0 18 eV . The TAIGA prototype will consist of ∼ 100 wide angle timing Cherenkov stations (TAIGA-HiSCORE) and three IACTs deployed over an area of ∼ 1 km 2 . The installation of the array is planned to be finished in 2019 while the data-taking can start already during the commissioning phase. The joint reconstruction of energy, direction, and core position of the imaging and non-imaging detectors will allow us to increase the distance between the IACTs up to 800 m, therefore providing a low-cost, highly sensitive detector. The relatively low cost together with the high sensitivity for energies ≥ 30–50 TeV make this pioneering technique very attractive for exploring galactic PeVatrons and cosmic rays. In addition to the Cherenkov light detectors we intend to deploy surface and underground muon detectors over an area of 1 km 2 with a total area of about 1000 m 2 . The results of the first season of coincident operation of the first ∼ 4 m diameter IACT with an aperture of ∼ 10°with 30 stations of TAIGA-HiSCORE will be presented.
- Published
- 2020
28. Hybrid technologies of welding aluminium alloys based on consumable electrode arc and constricted arc
- Author
-
V.E. Shevchenko, V.N. Korzhik, A.A. Babich, A.A. Grinyuk, and S.I. Peleshenko
- Subjects
010302 applied physics ,0209 industrial biotechnology ,Materials science ,Filler metal ,Gas tungsten arc welding ,Metallurgy ,Shielded metal arc welding ,02 engineering and technology ,Welding ,01 natural sciences ,Submerged arc welding ,law.invention ,Gas metal arc welding ,020901 industrial engineering & automation ,Carbon arc welding ,law ,0103 physical sciences ,Arc welding - Published
- 2016
- Full Text
- View/download PDF
29. Preliminary results from the TUS ultra-high energy cosmic ray orbital telescope: Registration of low-energy particles passing through the photodetector
- Author
-
M. Yu. Zotov, S. A. Sharakin, A. V. Tkachenko, A. A. Grinyuk, Gali Garipov, L. G. Tkachev, N. P. Chirskaya, Mikhail Panasyuk, B. A. Khrenov, I. V. Yashin, A. V. Shirokov, and Pavel Klimov
- Subjects
Physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Detector ,General Physics and Astronomy ,Photodetector ,Cosmic ray ,Astrophysics ,01 natural sciences ,law.invention ,Telescope ,Optics ,law ,0103 physical sciences ,Satellite ,Ultra-high-energy cosmic ray ,business ,010303 astronomy & astrophysics ,Energy (signal processing) - Abstract
The TUS telescope, part of the scientific equipment on board the Lomonosov satellite, is the world’s first orbital detector of ultra-high energy cosmic rays. Preliminary results from analyzing unexpected powerful signals that have been detected from the first days of the telescope’s operation are presented. These signals appear simultaneously in time intervals of around 1 μs in groups of adjacent pixels of the photodetector and form linear track-like sequences. The results from computer simulations using the GEANT4 software and the observed strong latitudinal dependence of the distribution of the events favor the hypothesis that the observed signals result from protons with energies of several hundred MeV to several GeV passing through the photodetector of the TUS telescope.
- Published
- 2017
- Full Text
- View/download PDF
30. Bose–Einstein Condensation as a Deposition Phase Transition of Quantum Hard Spheres and New Relations between Bosonic and Fermionic Pressures
- Author
-
К.А. Bugaev, Ivan P. Yakimenko, Oleksii Ivanytskyi, and B.E. Grinyuk
- Subjects
Condensed Matter::Quantum Gases ,Physics ,Phase transition ,Equation of state ,010308 nuclear & particles physics ,Entropy (statistical thermodynamics) ,General Physics and Astronomy ,Hard spheres ,01 natural sciences ,law.invention ,Grand canonical ensemble ,symbols.namesake ,law ,Phase (matter) ,Quantum mechanics ,0103 physical sciences ,symbols ,van der Waals force ,010306 general physics ,Bose–Einstein condensate - Abstract
We investigate the phase transition of Bose–Einstein particles with the hard-core repulsion in the grand canonical ensemble within the Van der Waals approximation. It is shown that the pressure of non-relativistic Bose–Einstein particles is mathematically equivalent to the pressure of simplified version of the statistical multifragmentation model of nuclei with the vanishing surface tension coefficient and the Fisher exponent тF = 5/2 , which for such parameters has the 1-st order phase transition. The found similarity of these equations of state allows us to show that within the present approach the high density phase of Bose-Einstein particles is a classical macro-cluster with vanishing entropy at any temperature which, similarly to the system of classical hard spheres, is a kind of solid state. To show this we establish new relations which allow us to identically represent the pressure of Fermi–Dirac particles in terms of pressures of Bose–Einstein particles of two sorts.
- Published
- 2020
- Full Text
- View/download PDF
31. On the Temperature Role in the Tunneling Process at the Low-Energy Nuclear Fusion
- Author
-
I.V. Simenog and B.E. Grinyuk
- Subjects
010302 applied physics ,Materials science ,Hydrogen ,Isotope ,General Physics and Astronomy ,chemistry.chemical_element ,Coulomb barrier ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,01 natural sciences ,Low energy ,chemistry ,Scientific method ,0103 physical sciences ,Coulomb ,Nuclear fusion ,Atomic physics ,010306 general physics ,Quantum tunnelling - Abstract
The temperature dependence of the coefficient of tunneling through the Coulomb barrier is estimated for nuclei of the hydrogen isotopes at comparatively low temperatures using a model of screened Coulomb interaction potential between the isotopes put inside an external oscillator potential well. The temperature dependences for the tunneling coefficient are calculated for pp-, pd-, pt-, dd-, and dt-processes at different screening radii. The probable role of pp-reactions is discussed.
- Published
- 2020
- Full Text
- View/download PDF
32. TAIGA—an advanced hybrid detector complex for astroparticle physics and high energy gamma-ray astronomy in the Tunka valley
- Author
-
N. Budnev, I. Astapov, P. Bezyazeekov, E. Bonvech, V. Boreyko, A. Borodin, M. Brückner, A. Bulan, D. Chernov, D. Chernykh, A. Chiavassa, A. Dyachok, O. Fedorov, A. Gafarov, A. Garmash, V. Grebenyuk, O. Gress, T. Gress, A. Grinyuk, O. Grishin, D. Horns, A. Ivanova, N. Kalmykov, Y. Kazarina, V. Kindin, S. Kiryuhin, R. Kokoulin, K. Kompaniets, D. Kostunin, E. Korosteleva, V. Kozhin, E. Kravchenko, A. Kryukov, L. Kuzmichev, A. Lagutin, Yu. Lemeshev, B. Lubsandorzhiev, N. Lubsandorzhiev, R. Mirgazov, R. Mirzoyan, R. Monkhoev, E. Osipova, A. Pakhorukov, A. Pan, M. Panasyuk, L. Pankov, D. Podgrudkov, V. Poleschuk, M. Popesku, E. Popova, A. Porelli, E. Postnikov, V. Prosin, V. Ptuskin, A. Petrukhin, A. Pushnin, R. Raikin, E. Rjabov, G. Rubtsov, Y. Sagan, V. Samoliga, A. Sidorenkov, A. Silaev, A. Silaev (junior), A. Skurikhin, M. Slunecka, A. Sokolov, L. Sveshnikova, Y. Suvorkin, V. Tabolenko, A. Tanaev, B. Tarashansky, L. M.Ternovoy, A. Tkachenko, L. Tkachev, M. Tluczykont, N. Ushakov, A. Vaidyanathan, P. Volchugov, D. Voronin, R. Wischnewski, I. Yashin, A. Zagorodnikov, and D. Zhurov
- Subjects
Astroparticle physics ,Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Physics beyond the Standard Model ,High Energy Physics::Phenomenology ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Elementary particle ,Gamma-ray astronomy ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Observatory ,0103 physical sciences ,Instrumentation ,Axion ,Mathematical Physics - Abstract
The TAIGA observatory addresses ground-based gamma-ray astronomy at energies from a few TeV to several PeV, cosmic ray physics from 100 TeV to several EeV as well as for search for axion-like particles, Lorentz violations and another evidence of New Physics. In 2020 year a one square kilometer TAIGA setup should be put in operation.
- Published
- 2020
- Full Text
- View/download PDF
33. Design features and data acquisition system of the TAIGA-Muon scintillation array
- Author
-
A. Ivanova, N. Budnev, A. Chiavassa, A. Dyachok, O. Fedorov, A. Gafarov, A. Garmash, V. Grebenyuk, O. Gress, T. Gress, O. Grishin, A. Grinyuk, D. Horns, N. Kalmykov, Y.A. Kazarina, V. Kindin, S. Kiryuhin, R. Kokoulin, K. Kompaniets, E. Korosteleva, V. Kozhin, E. Kravchenko, A. Krykov, L. Kuzmichev, A. Lagutin, Y. Lemeshev, V. Lenok, B. Lubsandorzhiev, N. Lubsandorzhiev, R. Mirgazov, R. Mirzoyan, R. Monkhoev, E. Osipova, A. Pakhorukov, A. Pan, M. Panasyuk, L. Pankov, A. Petrukhin, V. Poleschuk, M. Popescu, E. Popova, A. Porelly, E. Postnikov, V.V. Prosin, V.S. Ptuskin, A.A. Pushnin, R. Raikin, G. Rubtsov, E. Rybov, Y. Sagan, V. Samoliga, A. Silaev, A. Silaev Jr., A. Sidorenkov, A. Skurikhin, C. Slunecka, A. Sokolov, C. Spiering, Y. Suvorkin, L. Sveshnikova, V. Tabolenko, A. Tanaev, B. Tarashansky, M. Ternovoy, L. Tkachev, M. Tluczykont, N. Ushakov, A. Vaidyanathan, P. Volchugov, D. Voronin, R. Wischnevski, A. Zagorodnikov, D. Zhurov, and I. Yashin
- Subjects
spectrometer [muon] ,data acquisition ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Data acquisition ,0103 physical sciences ,ddc:610 ,spectrometer: design ,Instrumentation ,activity report ,scintillation counter ,Mathematical Physics ,Remote sensing ,Data processing ,Scintillation ,Muon ,010308 nuclear & particles physics ,Taiga ,design [spectrometer] ,design [electronics] ,electronics: readout ,control system ,readout [electronics] ,Geology ,muon: spectrometer ,electronics: design - Abstract
International Conference on Instrumentation for Colliding Beam Physics, INSTR20, Novosibirsk, Russia, 24 Feb 2020 - 28 Feb 2020; Journal of Instrumentation 15(06), C06057 (2020). doi:10.1088/1748-0221/15/06/C06057, The TAIGA-Muon scintillation array is located in the Tunka Valley. It is a part of the single TAIGA experimental complex. Its construction has started in the summer of 2019. By the autumn of 2019, the first three clusters were installed. We describe the design of the TAIGA-Muon array, the data acquisition (DAQ) sistem, reading and control systems., Published by Inst. of Physics, London
- Published
- 2020
- Full Text
- View/download PDF
34. TAIGA—A hybrid array for high-energy gamma astronomy and cosmic-ray physics
- Author
-
A. A. Petrukhin, E. A. Osipova, A. V. Skurikhin, A. Grinyuk, E. A. Kravchenko, D. Chernykh, E. E. Korosteleva, A. Garmash, R. P. Kokoulin, Dmitry Zhurov, Pavel Bezyazeekov, R. R. Mirgazov, B. A. Tarashchansky, Dieter Horns, Evgeny Postnikov, M. Popesku, Y. Suvorkin, Martin Tluczykont, S. Kiryuhin, Razmik Mirzoyan, O. Fedorov, V.A. Tabolenko, Konstantin Ustinov, A. Pakhorukov, A. Borodin, Aleksey Zagorodnikov, A. Chiavassa, V. Prosin, Valery Zurbanov, Bayarto Lubsandorzhiev, M. Slunecka, Y. Kazarina, L. G. Sveshnikova, I. V. Yashin, V. S. Ptuskin, Yaroslav Sagan, A. Pushnin, R. D. Monkhoev, Victor Grebenyuk, T. I. Gress, Dmitriy Kostunin, O. A. Gress, V. A. Poleschuk, N. M. Budnev, A. Silaev junior, E.G. Popova, A. Pan, D. Voronin, V. A. Kozhin, E. V. Ryabov, I. I. Astapov, V. V. Kindin, L. Tkachev, Roman Raikin, V. Samoliga, Ralf Wischnewski, L. A. Kuzmichev, A. Porelli, A. N. Dyachok, O. G. Grishin, Grigory Rubtsov, N. N. Kalmykov, Ch. Spiering, N. B. Lubsandorzhiev, A. Vaidyanathan, N. Ushakov, L. V. Pankov, K. Komponiets, A. Ivanova, Mikhail Panasyuk, Aleksandr Gafarov, A. A. Silaev, Alexander Kryukov, A. Sidorenkov, M. Brückner, Anatoly Lagutin, and A. Sokolov
- Subjects
Physics ,Nuclear and High Energy Physics ,High energy ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,7. Clean energy ,01 natural sciences ,Observatory ,Hybrid array ,0103 physical sciences ,010306 general physics ,Instrumentation ,Cherenkov radiation - Abstract
The combination of a wide angle timing Cherenkov array and Imaging Atmospheric Cherenkov Telescopes operated in mono mode offers a cost-effective way to construct a few square kilometers array for ultrahigh-energy gamma astronomy. The first stage of the TAIGA Observatory (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) is described here. It will comprise TAIGA-HiSCORE - 120 wide angle Cherenkov stations distributed over an area of 1.0 km2 and three IACTs (TAIGA-IACT).
- Published
- 2020
- Full Text
- View/download PDF
35. On separate chemical freeze-outs of hadrons and light (anti)nuclei in high energy nuclear collisions
- Author
-
Sonia Kabana, A. I. Ivanytskyi, Denys Savchenko, Kyrill A. Bugaev, David Blaschke, Arkadiy Taranenko, E. G. Nikonov, Larissa Bravina, V. V. Sagun, Evgeny Zabrodin, B. E. Grinyuk, Gennady Zinovjev, Université de Nantes (UN), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Université de Nantes - Faculté des Sciences et des Techniques, and Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
- Subjects
History ,hadron: resonance: gas ,heavy ion: scattering ,Proton ,Hadron ,nucleus: energy ,gas: model ,Nuclear Theory ,FOS: Physical sciences ,01 natural sciences ,Resonance (particle physics) ,freeze-out: chemical ,Education ,Surface tension ,Nuclear physics ,High Energy Physics - Phenomenology (hep-ph) ,ALICE ,surface tension ,0103 physical sciences ,freeze-out: temperature ,010306 general physics ,Nuclear Experiment ,Physics ,SIMPLE (dark matter experiment) ,energy: high ,010308 nuclear & particles physics ,antibaryon ,nucleon ,temperature: high ,Radius ,hadron: resonance ,nucleus: multiplicity ,light nucleus: production ,Computer Science Applications ,Baryon ,baryon ,High Energy Physics - Phenomenology ,resonance: gas ,Automatic Keywords ,light nucleus: multiplicity ,quality ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Nucleon - Abstract
The multiplicities of light (anti)nuclei were measured recently by the ALICE collaboration in Pb+Pb collisions at the center-of-mass collision energy $\sqrt{s_{NN}} =2.76$ TeV. Surprisingly, the hadron resonance gas model is able to perfectly describe their multiplicities under various assumptions. For instance, one can consider the (anti)nuclei with a vanishing hard-core radius (as the point-like particles) or with the hard-core radius of proton, but the fit quality is the same for these assumptions. In this paper we assume the hard-core radius of nuclei consisting of $A$ baryons or antibaryons to follow the simple law $R(A) = R_b (A)^\frac{1}{3}$, where $R_b$ is the hard-core radius of nucleon. To implement such a relation into the hadron resonance gas model we employ the induced surface tension concept and analyze the hadronic and (anti)nuclei multiplicities measured by the ALICE collaboration. The hadron resonance gas model with the induced surface tension allows us to verify different scenarios of chemical freeze-out of (anti)nuclei. It is shown that the most successful description of hadrons can be achieved at the chemical freeze-out temperature $T_h=150$ MeV, while the one for all (anti)nuclei is $T_A=168.5$ MeV. Possible explanations of this high temperature of (anti)nuclei chemical freeze-out are discussed., Comment: 6 pages, 1 figure
- Published
- 2018
- Full Text
- View/download PDF
36. Possible signals of two QCD phase transitions at NICA-FAIR energies
- Author
-
Kyrill A. Bugaev, Sonia Kabana, Evgeny Zabrodin, A. I. Ivanytskyi, Gennady Zinovjev, David Blaschke, B. E. Grinyuk, Larissa Bravina, E. G. Nikonov, Denys Savchenko, V. V. Sagun, Arkadiy Taranenko, Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Université de Nantes (UN), and Université de Nantes - Faculté des Sciences et des Techniques
- Subjects
Phase transition ,Particle physics ,hadron: resonance: gas ,heavy ion: scattering ,Nuclear Theory ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Qcd phase diagram ,QC1-999 ,High Energy Physics::Lattice ,Hadron ,gas: model ,FOS: Physical sciences ,01 natural sciences ,Resonance (particle physics) ,freeze-out: chemical ,Nuclear Theory (nucl-th) ,quantum chromodynamics: critical phenomena ,0103 physical sciences ,matter: hadronic ,010306 general physics ,Nuclear Experiment ,quark gluon: plasma ,quantum chromodynamics: matter ,Physics ,Quantum chromodynamics ,Range (particle radiation) ,multiplicity: ratio ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,Collision ,potential: chemical ,Quark–gluon plasma ,High Energy Physics::Experiment - Abstract
The chemical freeze-out irregularities found with the most advanced hadron resonance gas model and possible signals of two QCD phase transitions are discussed. We found that the center-of-mass collision energy range of tricritical endpoint of QCD phase diagram is [9; 9.2] GeV which is consistent both with QCD inspired exactly solvable model and with experimental findings., Comment: 6 pages, 2 figures
- Published
- 2018
- Full Text
- View/download PDF
37. Structure of $^{14}$N nucleus within a five-cluster model
- Author
-
D. V. Piatnytskyi and B. E. Grinyuk
- Subjects
momentum distributions ,Nuclear Theory ,Gaussian ,pair correlation functions ,General Physics and Astronomy ,FOS: Physical sciences ,парнi кореляцiйнi функцiї ,01 natural sciences ,кластерна структура ядра 14N ,Momentum ,Nuclear Theory (nucl-th) ,symbols.namesake ,0103 physical sciences ,iмпульснi розподiли ,Cluster (physics) ,medicine ,Mirror nuclei ,зарядовий розподiл густини ,010306 general physics ,Wave function ,Physics ,010308 nuclear & particles physics ,cluster structure of 14N nucleus ,medicine.anatomical_structure ,symbols ,charge density distribution ,Atomic physics ,Nucleon ,Nucleus ,Energy (signal processing) - Abstract
The spatial structure of $^{14}$N nucleus is studied within a five-particle model (three $\alpha$-particles plus two nucleons). Using the variational approach with Gaussian bases, the ground-state energy and wave function are calculated for this five-particle system. Two spatial configurations in the ground-state wave function are revealed. The density distributions, pair correlation functions, and the momentum distributions of particles are analyzed and compared with those of the mirror nuclei $^{14}$C and $^{14}$O., Comment: arXiv admin note: substantial text overlap with arXiv:1611.07949
- Published
- 2018
- Full Text
- View/download PDF
38. TAIGA - a hybrid array for high energy gamma astronomy and cosmic ray physics
- Author
-
N. Budnev, I. Astapov, P. Bezyazeekov, V. Boreyko, A. Borodin, M. Brueckner, A. Chiavassa, A. Dyachok, O. Fedorov, A. Gafarov, A. Garmash, N. Gorbunov, V. Grebenyuk, O. Gress, T. Gress, O. Grishin, A. Grinyuk, A. Haungs, R. Hiller, D. Horns, T. Huege, N. Kalmykov, Y. Kazarina, V. Kindin, S. Kiryuhin, P. Kirilenko, M. Kleifges, R. Kokoulin, K. Kompaniets, E. Korosteleva, D. Kostunin, V. Kozhin, E. Kravchenko, L. Kuzmichev, Yu. Lemeshev, V. Lenok, B. Lubsandorzhiev, N. Lubsandorzhiev, R. Mirgazov, R. Mirzoyan, R. Monkhoev, E. Osipova, A. Pakhorukov, M. Panasyuk, L. Pankov, A. Petrukhin, V. Poleschuk, M. Popescu, E. Popova, A. Porelli, E. Postnikov, V. Prosin, V. Ptuskin, E. Rjabov, G. Rubtsov, A. Pushnin, Y. Sagan, B. Sabirov, V. Samoliga, F. Schröder, Yu. Semeney, A. Silaev, A. Sidorenkov, A. Skurikhin, V. Slunecka, A. Sokolov, C. Spiering, L. Sveshnikova, V. Tabolenko, B. Tarashansky, A. Tkachenko, L. Tkachev, M. Tluczykont, R. Wischnewski, A. Zagorodnikov, D. Zhurov, V. Zurbanov, and I. Yashin
- Subjects
Physics ,Range (particle radiation) ,High energy ,010308 nuclear & particles physics ,QC1-999 ,Taiga ,Detector ,Gamma ray ,Astronomy ,Cosmic ray ,01 natural sciences ,Galaxy ,Hybrid array ,0103 physical sciences ,ddc:530 ,010303 astronomy & astrophysics - Abstract
The physics motivations and advantages of the new TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) detector are presented. TAIGA aims at gamma-ray astronomy at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV. For the energy range 30 – 200 TeV the sensitivity of 10 km2 area TAIGA array for the detection of local sources is expected to be 5 × 10-14 erg cm-2 sec-1 for 300 h of observations. Reconstruction of the given EAS energy, incoming direction and its core position, based on the timing TAIGA-HiSCORE data, allows one to increase a distance between the IACTs up to 600-1000 m. The low investments together with the high sensitivity for energies ≥ 30-50 TeV make this pioneering technique very attractive for exploring the galactic PeVatrons and cosmic rays. At present the TAIGA first stage has been constructed in Tunka valley, 50 km West from the Lake Baikal. The first experimental results of the TAIGA first stage are presented.
- Published
- 2018
39. Remote Sensing of the Atmosphere by the Ultraviolet Detector TUS Onboard the Lomonosov Satellite
- Author
-
Oleg Saprykin, L. G. Tkachev, A. A. Grinyuk, Mikhail Zotov, Alla Botvinko, I. V. Yashin, M. V. Lavrova, Vasily Petrov, A. V. Tkachenko, Sergei A. Sharakin, B. A. Khrenov, Mikhail Panasyuk, M. A. Kaznacheeva, Pavel Klimov, Gali Garipov, Alexander Senkovsky, Andrei Puchkov, V. M. Grebenyuk, and Andrei Shirokov
- Subjects
Physics ,Luminosity (scattering theory) ,010504 meteorology & atmospheric sciences ,orbital uv telescope ,Detector ,Cosmic ray ,Field of view ,Astrophysics::Cosmology and Extragalactic Astrophysics ,atmospheric uv emission ,01 natural sciences ,transient luminous events ,Atmosphere ,Temporal resolution ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,General Earth and Planetary Sciences ,lcsh:Q ,Satellite ,lcsh:Science ,010303 astronomy & astrophysics ,Image resolution ,0105 earth and related environmental sciences ,Remote sensing - Abstract
The orbital detector TUS (Tracking Ultraviolet Setup) with high sensitivity in near-visible ultraviolet (tens of photons per time sample of 0.8 μ s of wavelengths 300−400 nm from a detector’s pixel field of view) and the microsecond-scale temporal resolution was developed by the Lomonosov-UHECR/TLE collaboration and launched into orbit on 28 April 2016. A variety of different phenomena were studied by measuring ultraviolet signals from the atmosphere: extensive air showers from ultra-high-energy cosmic rays, lightning discharges, transient atmospheric events, aurora ovals, and meteors. These events are different in their origin and in their duration and luminosity. The TUS detector had a capability to conduct measurements with different temporal resolutions (0.8 μ s, 25.6 μ s, 0.4 ms, and 6.6 ms) but the same spatial resolution of 5 km. Results of the TUS detector measurements of various atmospheric emissions are discussed and compared to data from previous experiments.
- Published
- 2019
- Full Text
- View/download PDF
40. 'Lomonosov' Satellite—Space Observatory to Study Extreme Phenomena in Space
- Author
-
Christopher T. Russell, Il Han Park, Gali Garipov, V. A. Sadovnichii, Mikhail Zotov, Vassilis Angelopoulos, M. V. Lavrova, E. S. Gorbovskoy, Drew Turner, E. Ponce, A. V. Tkachenko, Humberto Ibarguen Salazar, Jubok Lee, M. B. Kim, L. G. Tkachev, Pavel Klimov, S. Biktemerova, V. M. Lipunov, A. M. Amelyushkin, Robert J. Strangeway, A. A. Grinyuk, H. M. Jeong, S. I. Svertilov, S. Jeong, V.V. Benghin, B. A. Khrenov, I. V. Yashin, Vladimir Kalegaev, A. V. Shirokov, V. V. Bogomolov, Yuri Shprits, V. L. Petrov, Sergei A. Sharakin, O. Martinez, Andrei Runov, R. Caron, Mikhail Panasyuk, and 2.3 Earth's Magnetic Field, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum
- Subjects
Scientific instrument ,Astroparticle physics ,Engineering ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Library science ,Astronomy and Astrophysics ,Space physics ,Space (commercial competition) ,01 natural sciences ,Space observatory ,Space and Planetary Science ,Scientific Equipment ,0103 physical sciences ,Space industry ,Satellite ,010306 general physics ,business ,010303 astronomy & astrophysics - Abstract
The “Lomonosov” space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organizations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: - Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-Zatsepin-Kuzmin (GZK) cutoff; - Ultraviolet (UV) transient luminous events in the upper atmosphere; - Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; - Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; - Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; - Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments.
- Published
- 2017
41. The TUS detector of extreme energy cosmic rays on board the Lomonosov satellite
- Author
-
M. Yu. Zotov, M. V. Lavrova, Gali Garipov, L. G. Tkachev, S. Biktemerova, A.N. Senkovsky, Inkyu Park, Vasily Petrov, O. Martinez, Jubok Lee, I. V. Yashin, N. N. Kalmykov, Mikhail Panasyuk, S. A. Sharakin, O. A. Saprykin, E. Ponce, A. V. Tkachenko, B. A. Khrenov, Humberto Ibarguen Salazar, V. M. Grebenyuk, A. A. Grinyuk, Pavel Klimov, A.E. Puchkov, Seok Ho Jeong, A. V. Shirokov, and A.A. Botvinko
- Subjects
Physics ,Photomultiplier ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Magnetosphere ,FOS: Physical sciences ,Astronomy and Astrophysics ,Celestial sphere ,Cosmic ray ,Radiation ,Tracking (particle physics) ,01 natural sciences ,Space and Planetary Science ,0103 physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
The origin and nature of extreme energy cosmic rays (EECRs), which have energies above the 50 EeV, the Greisen-Zatsepin-Kuzmin (GZK) energy limit, is one of the most interesting and complicated problems in modern cosmic-ray physics. Existing ground-based detectors have helped to obtain remarkable results in studying cosmic rays before and after the GZK limit, but have also produced some contradictions in our understanding of cosmic ray mass composition. Moreover, each of these detectors covers only a part of the celestial sphere, which poses problems for studying the arrival directions of EECRs and identifying their sources. As a new generation of EECR space detectors, TUS (Tracking Ultraviolet Set-up), KLYPVE and JEM-EUSO, are intended to study the most energetic cosmic-ray particles, providing larger, uniform exposures of the entire celestial sphere. The TUS detector, launched on board the Lomonosov satellite on April 28, 2016, from Vostochny Cosmodrome in Russia, is the first of these. It employs a single-mirror optical system and a photomultiplier tube matrix as a photo-detector and will test the fluorescent method of measuring EECRs from space. Utilizing the Earth's atmosphere as a huge calorimeter, it is expected to detect EECRs with energies above 100 EeV. It will also be able to register slower atmospheric transient events: atmospheric fluorescence in electrical discharges of various types including precipitating electrons escaping the magnetosphere and from the radiation of meteors passing through the atmosphere. We describe the design of the TUS detector and present results of different ground-based tests and simulations., Comment: 19 pages; v2: figures 6 and 9 replaced to match the published version
- Published
- 2017
- Full Text
- View/download PDF
42. Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA): Status, results and perspectives
- Author
-
Kuzmichev L., Astapov I., Bezyazeekov P., Boreyko V., Borodin A., Brückner M., Budnev N., Chiavassa A., Gress O., Gress T., Grishin O., Dyachok A., Epimakhov S., Fedorov O., Gafarov A., Grebenyuk V., Grinyuk A., Haungs A., Horns D., Huege T., Ivanova A., Jurov D., Kalmykov N., Kazarina Y., Kindin V., Kiryuhin V., Kokoulin R., Kompaniets K., Korosteleva E., Kostunin D., Kozhin V., Kravchenko E., Kunnas M., Lenok V., Lubsandorzhiev B., Lubsandorzhiev N., Mirgazov R., Mirzoyan R., Monkhoev R., Nachtigal R., Osipova E., Pakharukov A., Panasyuk M., Pankov L., Petrukhin A., Poleschuk V., Popesku M., Popova E., Porelli A., Postnikov E., Prosin V., Ptuskin V., Pushnin A., Rubtsov G., Ryabov E., Sagan Y., Samoliga V., Schröder F.G., Semeney Yu., Silaev A., Sidorenko A., Skurikhin A., Slunecka V., Sokolov A., Spiering C., Sveshnikova L., Sulakov V., Tabolenko V., Tarashansky B., Tkachenko A., Tkachev L., Tluczykont M., Wischnewski R., Zagorodnikov A., Zurbanov V., and Yashin I.
- Subjects
010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Physics ,QC1-999 ,0103 physical sciences ,Astrophysics::Instrumentation and Methods for Astrophysics ,010306 general physics ,01 natural sciences - Abstract
We present the current status of high-energy cosmic-ray physics and gamma-ray astronomy at the Tunka Astrophysical Center (AC). This complex is located in the Tunka Valley, about 50 km from Lake Baikal. Present efforts are focused on the construction of the first stage of the gamma-ray observatory TAIGA - the TAIGA prototype. TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) is designed for the study of gamma rays and charged cosmic rays in the energy range 1013 eV–1018 eV. The array includes a network of wide angle timing Cherenkov stations (TAIGA-HiSCORE), each with a FOV = 0.6 sr, plus up to 16 IACTs (FOV - 10∘× 10∘). This part covers an area of 5 km2. Additional muon detectors (TAIGA-Muon), with a total coverage of 2000 m2, are distributed over an area of 1 km2.
- Published
- 2017
43. Hybrid method for identifying mass groups of primary cosmic rays in the joint operation of IACTs and wide angle Cherenkov timing arrays
- Author
-
Evgeny Postnikov, A. Grinyuk, L. A. Kuzmichev, and L. G. Sveshnikova
- Subjects
History ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,FOS: Physical sciences ,IACT ,Cosmic ray ,01 natural sciences ,Education ,Primary (astronomy) ,0103 physical sciences ,Range (statistics) ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Cherenkov radiation ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,Computer Science Applications ,Computational physics ,Core (optical fiber) ,85-06 ,Physics - Data Analysis, Statistics and Probability ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Energy (signal processing) ,Data Analysis, Statistics and Probability (physics.data-an) - Abstract
This work is a methodical study of another option of the hybrid method originally aimed at gamma/hadron separation in the TAIGA experiment. In the present paper this technique was performed to distinguish between different mass groups of cosmic rays in the energy range 200 TeV - 500 TeV. The study was based on simulation data of TAIGA prototype and included analysis of geometrical form of images produced by different nuclei in the IACT simulation as well as shower core parameters reconstructed using timing array simulation. We show that the hybrid method can be sufficiently effective to precisely distinguish between mass groups of cosmic rays., Comment: 6 pages, 3 figures; proceedings of the 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016)
- Published
- 2017
- Full Text
- View/download PDF
44. Structure of $^{14}$C and $^{14}$O nuclei calculated in the variational approach
- Author
-
D.V Piatnytskyi and B.E. Grinyuk
- Subjects
Physics ,Nuclear Theory (nucl-th) ,Classical mechanics ,Nuclear Theory ,010308 nuclear & particles physics ,0103 physical sciences ,Structure (category theory) ,General Physics and Astronomy ,FOS: Physical sciences ,010306 general physics ,Nuclear Experiment ,01 natural sciences - Abstract
The structure of mirror $^{14}$C and $^{14}$O nuclei has been studied in the framework of the five-particle model (three $\alpha$-particles and two nucleons). Interaction potentials are proposed, which allowed the energy and radius of $^{14}$C nucleus, as well as the energy of $^{14}$O one, to agree with experimental data. On the basis of the variational approach with the use of Gaussian bases, the energies and wave functions for five-particle systems under consideration are calculated. The charge radius of $^{14}$O nucleus, as well as the charge density distributions and the form factors for both nuclei, are predicted.
- Published
- 2017
- Full Text
- View/download PDF
45. The TAIGA experiment: From cosmic-ray to gamma-ray astronomy in the Tunka valley
- Author
-
A. Haungs, N. B. Lubsandorzhiev, V. Samoliga, Grigory Rubtsov, N. N. Kalmykov, M. Brückner, A Saunkin, E. A. Osipova, D. Voronin, E.G. Popova, Pavel Bezyazeekov, V. Boreyko, O. G. Grishin, R. Hiller, B. K. Lubsandorzhiev, V. A. Poleschuk, A. N. Dyachok, N. V. Gorbunov, N Kirichkov, E. A. Kravchenko, L. Sveshnikova, E. E. Korosteleva, M. Kunnas, N. Karpov, E. Rybov, A. Pakhorukov, R. P. Kokoulin, R. D. Monkhoev, T. I. Gress, E. Fedoseev, A. V. Tkachenko, A. G. Bogdanov, R. Mirzoyan, A. Pushnin, Aleksandr Gafarov, M. Kleifges, R. R. Mirgazov, V.A. Tabolenko, A. Ivanova, Evgeny Postnikov, N. S. Barbashina, V Platonov, A. A. Silaev, A. V. Zagorodnikov, Oleg Fedorov, Y. Kazarina, K. O. Yurin, L. V. Pankov, A. A. Grinyuk, I. I. Astapov, Dmitriy Kostunin, O. A. Gress, V. Zirakashvili, B. A. Tarashchansky, V. A. Kozhin, O. Chvalaev, S.G. Pivovarov, Yu. A. Tikhonov, V. S. Ptuskin, F.G. Schröder, M. Tluczykont, R. Wischnewski, T. Huege, C. Spiering, Andrey Sokolov, N. M. Budnev, I. I. Yashin, A. Barnyakov, Valery Zurbanov, L. G. Tkachev, K. G. Kompaniets, Yu. A. Semeney, V. V. Lenok, A. Porelli, P. Kirilenko, A. V. Skurikhin, L. A. Kuzmichev, V. M. Grebenyuk, R. Nachtigall, Dieter Horns, A. Chiavassa, A. A. Perevalov, A. A. Petrukhin, S. Epimakhov, S. Kiryuhin, V. V. Prosin, and M. I. Panasyuk
- Subjects
Nuclear and High Energy Physics ,TAIGA ,Physics::Instrumentation and Detectors ,Cherenkov detector ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic ray ,IACT ,Astrophysics ,01 natural sciences ,law.invention ,Observatory ,law ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation ,Cherenkov radiation ,Physics ,Muon ,Gamma astronomy ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,Gamma-ray astronomy - Abstract
We present physical motivations and advantages of the new gamma-observatory TAIGA (Tunka Advanced Instrument for cosmic ray physics and gamma-ray astronomy). TAIGA will be located in the Tunka valley, 50 km to the west of Lake Baikal, at the same place as the integrating air Cherenkov detector for cosmic rays Tunka-133. The TAIGA array is a complex, hybrid detector for ground-based gamma-ray astronomy for energies from a few TeV to several PeV as well as for cosmic ray studies from 100 TeV to several EeV. The array will consist of a wide angle Cherenkov array – TAIGA-HiSCORE with 5km2 area, a net of 16 IACT telescopes (with FOV of about 9.72°×9.72°) as well as muon and other detectors. We present the current status of the array construction.
- Published
- 2017
46. Hard-Core Radius of Nucleons within the Induced Surface Tension Approach
- Author
-
Arkadiy Taranenko, V. V. Sagun, B. E. Grinyuk, Evgeny Zabrodin, Ludwik Turko, E. G. Nikonov, Gennady Zinovjev, Larissa Bravina, David Blaschke, Kyrill A. Bugaev, A. I. Ivanytskyi, and Denys Savchenko
- Subjects
quark-hadron phase transition ,lcsh:QC793-793.5 ,Nuclear Theory ,Hadron ,FOS: Physical sciences ,General Physics and Astronomy ,neutron star matter ,01 natural sciences ,Nuclear Theory (nucl-th) ,symbols.namesake ,Theoretical physics ,High Energy Physics - Phenomenology (hep-ph) ,Pauli exclusion principle ,0103 physical sciences ,Nuclear Experiment ,010306 general physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010308 nuclear & particles physics ,lcsh:Elementary particle physics ,chemical freeze-out ,Nuclear matter ,High Energy Physics - Phenomenology ,Neutron star ,symbols ,Substructure ,van der Waals force ,Astrophysics - High Energy Astrophysical Phenomena ,Nucleon ,Phenomenology (particle physics) ,excluded hadron volume - Abstract
In this work we discuss a novel approach to model the hadronic and nuclear matter equations of state using the induced surface tension concept. Since the obtained equations of state, classical and quantum, are among the most successful ones in describing the properties of low density phases of strongly interacting matter, they set strong restrictions on the possible value of the hard-core radius of nucleons. Therefore, we perform a detailed analysis of its value which follows from hadronic and nuclear matter properties and find the most trustworthy range of its values: the hard-core radius of nucleons is 0.30--0.36 fm. A comparison with the phenomenology of neutron stars implies that the hard-core radius of nucleons has to be temperature and density dependent., 12 pages, 4 figures, references added, typos corrected
- Published
- 2019
- Full Text
- View/download PDF
47. Main reasons to modify the ecomonitoring system of Novomoskovsk atmosphere relying on modern modeling methods
- Author
-
Grinyuk Olga, Ganesan Catherine, Arkhipov Alexander, and Aleksashina Olga
- Subjects
lcsh:GE1-350 ,Atmosphere (unit) ,010504 meteorology & atmospheric sciences ,Meteorology ,0208 environmental biotechnology ,Airflow ,02 engineering and technology ,01 natural sciences ,Field (computer science) ,020801 environmental engineering ,Measuring instrument ,Environmental science ,Current (fluid) ,Air quality index ,lcsh:Environmental sciences ,Energy (signal processing) ,0105 earth and related environmental sciences ,Interpolation - Abstract
Novomoskovsk is one of the main centers of chemical industry in central Russia. In 2000 to control and monitor the region air quality and movement the atmosphere ecomonitorin system was created. These systems’ modifying lies in using more sophisticated technology, increasing number of observation stations and automatic sensors that determine harmful impurities. The data adequacy of airspace’s state hinges on the number of these stations and their location. The objective of our study is to estimate the data adequacy relying on modern research methods. The research involved the interpolation method of air movement control over areas which have a mixed landscape because of technology-related accidents. The method consists of 3 main stages: experimental examination of the area’s weather conditions, processing of this data using the method of air flow field recovery, and effective control of the air dynamics at man-made accidents. Air control stations gave the initial measures and current data to develop the method of air flow field recovery on the basis of the noise-resistant interpolation principle. Noise-resistant interpolation admits to errors of measuring instruments, which makes a significant magnitude when estimating meteorological data of the air. The data obtained requires to modify Novomoskovsk ecomonitoring system of the atmosphere.
- Published
- 2019
- Full Text
- View/download PDF
48. Cosmic Ray Energy Spectrum derived from the Data of EAS Cherenkov Light Arrays in the Tunka Valley
- Author
-
Prosin V., Astapov I., Bezyazeekov P., Borodin A., Brückner M., Budnev N., Chiavassa A., Dyachok A., Fedorov O., Gafarov A., Garmash A., Grebenyuk V., Gress O., Gress T., Grishin O., Grinyuk A., Horns D., Kalmykov N., Kazarina Y., Kindin V., Kiryuhin S., Kirilenko P., Kokoulin R., Kompaniets K., Korosteleva E., Kozhin V., Kravchenko E., Kuzmichev L., Lagutin A., Lemeshev Yu., Lenok V., Lubsandorzhiev B., Lubsandorzhiev N., Mirgazov R., Mirzoyan R., Monkhoev R., Osipova E., Pakhorukov A., Pan A., Panasyuk M., Pankov L., Petrukhin A., Poleschuk V., Popescu M., Popova E., Porelli A., Postnikov E., Ptuskin V., Pushnin A., Raikin R., Rjabov E., Rubtsov G., Sagan Y., Samoliga V., Semeney Yu., Sidorenkov A., Silaev A., Silaev (junior) A., Skurikhin A., Slunecka M., Sokolov A., Spiering C., Sveshnikova L., Tabolenko V., Tarashansky B., Tkachev L., Tluczykont M., Ushakov N., Voronin D., Wischnewski R., Zagorodnikov A., Zhurov D., Zurbanov V., and Yashin I.
- Subjects
010308 nuclear & particles physics ,Physics ,QC1-999 ,0103 physical sciences ,010303 astronomy & astrophysics ,01 natural sciences - Abstract
The extensive air shower Cherenkov light array Tunka-133 collected data during 7 winter seasons from 2009 to 2017. From 2175 hours of data taking, we derived the differential energy spectrum of cosmic rays in the energy range 6 · 1015 2 · 1018 eV. The TAIGA-HiSCORE array is in the process of continuous expansion and modernization. Here we present the results obtained with 28 stations of the first HiSCORE stage from 35 clear moonless nights in the winter of 2017-2018. The combined spectrum of two arrays covers a range of 2 · 1014 – 2 · 1018 eV.
- Published
- 2019
- Full Text
- View/download PDF
49. Significance of nonperturbative input to the transverse momentum dependent gluon density for hard processes at the LHC
- Author
-
N. P. Zotov, A. V. Lipatov, A. A. Grinyuk, and Gennady Lykasov
- Subjects
Physics ,Particle physics ,Large Hadron Collider ,Proton ,010308 nuclear & particles physics ,High Energy Physics::Lattice ,Nuclear Theory ,High Energy Physics::Phenomenology ,Hadron ,01 natural sciences ,Gluon ,Nuclear physics ,Transverse plane ,Exact solutions in general relativity ,0103 physical sciences ,Content (measure theory) ,Saturation (graph theory) ,High Energy Physics::Experiment ,Nuclear Experiment ,010306 general physics - Abstract
We study the role of the nonperturbative input to the transverse momentum dependent (TMD) gluon density in hard processes at the LHC. We derive the input TMD gluon distribution at a low scale ${\ensuremath{\mu}}_{0}^{2}\ensuremath{\sim}1\text{ }\text{ }{\mathrm{GeV}}^{2}$ from a fit of inclusive hadron spectra measured at low transverse momenta in $pp$ collisions at the LHC and demonstrate that the best description of these spectra for larger hadron transverse momenta can be achieved by matching the derived TMD gluon distribution with the exact solution of the Balitsky-Fadin-Kuraev-Lipatov equation obtained at low $x$ and small gluon transverse momenta outside the saturation region. Then, we extend the input TMD gluon density to higher ${\ensuremath{\mu}}^{2}$ numerically using the Catani-Ciafoloni-Fiorani-Marchesini gluon evolution equation. Special attention is paid to phenomenological applications of the obtained TMD gluon density to some LHC processes, which are sensitive to the gluon content of a proton.
- Published
- 2016
- Full Text
- View/download PDF
50. First results from the TUS orbital detector in the extensive air shower mode
- Author
-
V. E. Eremeev, Pavel Klimov, M. B. Kim, A.E. Puchkov, N. N. Kalmykov, S. Biktemerova, A.A. Botvinko, Il Han Park, A.N. Senkovsky, Mikhail Panasyuk, O. A. Saprykin, A. Tkachenko, B. A. Khrenov, E. Ponce, Gali Garipov, A. Grinyuk, Vasily Petrov, N. P. Chirskaya, J. K. Lee, I. V. Yashin, H. Salazar, L. Tkachev, A. V. Shirokov, Victor Grebenyuk, M. Yu. Zotov, Oscar Martínez, Sergei A. Sharakin, M. V. Lavrova, and S. Jeong
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Detector ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Cosmic ray ,Tracking (particle physics) ,01 natural sciences ,Atmosphere ,Air shower ,Spitzer Space Telescope ,0103 physical sciences ,Satellite ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Cherenkov radiation ,0105 earth and related environmental sciences - Abstract
TUS (Tracking Ultraviolet Set-up), the first orbital detector of extreme energy cosmic rays (EECRs), those with energies above 50 EeV, was launched into orbit on April 28, 2016, as a part of the Lomonosov satellite scientific payload. The main aim of the mission is to test a technique of registering fluorescent and Cherenkov radiation of extensive air showers generated by EECRs in the atmosphere with a space telescope. We present preliminary results of its operation in a mode dedicated to registering extensive air showers in the period from August 16, 2016, to November 4, 2016. No EECRs have been conclusively identified in the data yet, but the diversity of ultraviolet emission in the atmosphere was found to be unexpectedly rich. We discuss typical examples of data obtained with TUS and their possible origin. The data is important for obtaining more accurate estimates of the nocturnal ultraviolet glow of the atmosphere, necessary for successful development of more advanced orbital EECR detectors including those of the KLYPVE (K-EUSO) and JEM-EUSO missions., 18 pages; v2: references fixed; v3: minor changes to address referee's comments
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.