8 results on '"Isaac J. Sugden"'
Search Results
2. Polymorphism in p-aminobenzoic acid
- Author
-
Martin R. Ward, Iain D. H. Oswald, Isaac J. Sugden, Roger J. Davey, and Aurora J. Cruz-Cabeza
- Subjects
Chemistry ,Energy landscape ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Crystal structure prediction ,law.invention ,Drug compound ,Crystallography ,Polymorphism (materials science) ,law ,P-Aminobenzoic acid ,High pressure ,QD ,General Materials Science ,Crystallization ,0210 nano-technology - Abstract
We review the polymorphism of p-aminobenzoic acid (pABA), a model drugcompound whose crystallisation and polymorphic behaviour has been extensively studied in recent years. Beyond the well-known and characterised α and β forms, pABA also crystallises as a γ polymorph, which is structurally similar to the α form. In addition we also compare the newly reported δ form, obtained by high pressure crystallisation and through compression of the α-form. A structural analysis and comparison of all of the forms is presented, the conditions by which each of them is obtained summarised. Crystal structure prediction calculations have also been carried out in order to probe the solid form energy landscape of this compound. The overall picture of the polymorphism of pABA, reveals, surprisingly, the rarity of the β form.
- Published
- 2019
3. Crystal Structure Prediction Methods for Organic Molecules: State of the Art
- Author
-
Stefanos Konstantinopoulos, Claire S. Adjiman, David H. Bowskill, Constantinos C. Pantelides, and Isaac J. Sugden
- Subjects
Models, Molecular ,010304 chemical physics ,Renewable Energy, Sustainability and the Environment ,Computer science ,General Chemical Engineering ,media_common.quotation_subject ,Reproducibility of Results ,General Chemistry ,Common framework ,010402 general chemistry ,Crystallography, X-Ray ,01 natural sciences ,Data science ,0104 chemical sciences ,Crystal structure prediction ,Organic molecules ,State (polity) ,Pharmaceutical Preparations ,0103 physical sciences ,media_common - Abstract
The prediction of the crystal structures that a given organic molecule is likely to form is an important theoretical problem of significant interest for the pharmaceutical and agrochemical industries, among others. As evidenced by a series of six blind tests organized over the past 2 decades, methodologies for crystal structure prediction (CSP) have witnessed substantial progress and have now reached a stage of development where they can begin to be applied to systems of practical significance. This article reviews the state of the art in general-purpose methodologies for CSP, placing them within a common framework that highlights both their similarities and their differences. The review discusses specific areas that constitute the main focus of current research efforts toward improving the reliability and widening applicability of these methodologies, and offers some perspectives for the evolution of this technology over the next decade.
- Published
- 2021
4. Efficient screening for ternary molecular ionic cocrystals using a complementary mechanosynthesis and computational structure prediction approach
- Author
-
Sharmarke Mohamed, Abeer F. Shunnar, David H. Bowskill, Bhausaheb Dhokale, Hector H. Hernandez, Isaac J. Sugden, Panče Naumov, and Durga Prasad Karothu
- Subjects
Chemistry, Multidisciplinary ,Ionic bonding ,SOLID-STATE LANDSCAPE ,Crystal structure ,010402 general chemistry ,Crystal engineering ,01 natural sciences ,POTENTIAL-FUNCTION MODELS ,Catalysis ,crystal structure prediction ,law.invention ,ENERGY ,Computational chemistry ,law ,Crystallization ,mechanosynthesis ,CO-CRYSTALS ,SUPRAMOLECULAR SYNTHONS ,Science & Technology ,Full Paper ,STABILITY ,010405 organic chemistry ,Chemistry ,green chemistry ,Organic Chemistry ,SALT ,DISTRIBUTED MULTIPOLE ANALYSIS ,General Chemistry ,Full Papers ,PHARMACEUTICAL COCRYSTALS ,0104 chemical sciences ,Crystal structure prediction ,X-ray diffraction ,crystal engineering ,X-ray crystallography ,Physical Sciences ,CRYSTAL-STRUCTURE PREDICTION ,Mechanosynthesis ,molecular ionic cocrystals ,Ternary operation ,03 Chemical Sciences - Abstract
The discovery of molecular ionic cocrystals (ICCs) of active pharmaceutical ingredients (APIs) widens the opportunities for optimizing the physicochemical properties of APIs whilst facilitating the delivery of multiple therapeutic agents. However, ICCs are often observed serendipitously in crystallization screens and the factors dictating their crystallization are poorly understood. We demonstrate here that mechanochemical ball milling is a versatile technique for the reproducible synthesis of ternary molecular ICCs in less than 30 min of grinding with or without solvent. Computational crystal structure prediction (CSP) calculations have been performed on ternary molecular ICCs for the first time and the observed crystal structures of all the ICCs were correctly predicted. Periodic dispersion‐corrected DFT calculations revealed that all the ICCs are thermodynamically stable (mean stabilization energy=−2 kJ mol−1) relative to the crystallization of a physical mixture of the binary salt and acid. The results suggest that a combined mechanosynthesis and CSP approach could be used to target the synthesis of higher‐order molecular ICCs with functional properties., Spot on predictions! The mechanosynthesis of ternary molecular ionic cocrystals (ICCs) with significantly different physicochemical properties has been achieved in less than 30 min of grinding. The crystal structures of the ICCs were successfully predicted by using computational methods. The results pave the way for the efficient screening of higher‐order multicomponent crystal forms with functional properties (see figure).
- Published
- 2019
5. Accurate and efficient representation of intramolecular energy inab initiogeneration of crystal structures. I. Adaptive local approximate models
- Author
-
Isaac J. Sugden, Constantinos C. Pantelides, Claire S. Adjiman, and Engineering & Physical Science Research Council (EPSRC)
- Subjects
Chemistry, Multidisciplinary ,SOLIDS ,Ab initio ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,crystal structure prediction ,Reduction (complexity) ,Computational chemistry ,solid-state science ,Materials Chemistry ,0912 Materials Engineering ,Representation (mathematics) ,FLEXIBLE MOLECULES ,0306 Physical Chemistry (incl. Structural) ,Flexibility (engineering) ,Science & Technology ,Crystallography ,Chemistry ,SMALL ORGANIC-MOLECULES ,Metals and Alloys ,Function (mathematics) ,021001 nanoscience & nanotechnology ,Grid ,Research Papers ,BLIND TEST ,POLYMORPHISM ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Crystal structure prediction ,local apprioximate model ,Physical Sciences ,Inorganic & Nuclear Chemistry ,STRUCTURE PREDICTION ,LANDSCAPES ,0210 nano-technology ,0301 Analytical Chemistry ,Algorithm ,Energy (signal processing) - Abstract
This article describes an important improvement in the CrystalPredictor II code: adaptive Local Approximate Models (LAMs). This improvement allows the most efficient use of computational effort to cover a flexible molecule’s conformational space, and is illustrated with a crystal structure prediction (CSP) investigation into the sixth blind test molecule 26., The global search stage of crystal structure prediction (CSP) methods requires a fine balance between accuracy and computational cost, particularly for the study of large flexible molecules. A major improvement in the accuracy and cost of the intramolecular energy function used in the CrystalPredictor II [Habgood et al. (2015 ▸). J. Chem. Theory Comput. 11, 1957–1969] program is presented, where the most efficient use of computational effort is ensured via the use of adaptive local approximate model (LAM) placement. The entire search space of the relevant molecule’s conformations is initially evaluated using a coarse, low accuracy grid. Additional LAM points are then placed at appropriate points determined via an automated process, aiming to minimize the computational effort expended in high-energy regions whilst maximizing the accuracy in low-energy regions. As the size, complexity and flexibility of molecules increase, the reduction in computational cost becomes marked. This improvement is illustrated with energy calculations for benzoic acid and the ROY molecule, and a CSP study of molecule (XXVI) from the sixth blind test [Reilly et al. (2016 ▸). Acta Cryst. B72, 439–459], which is challenging due to its size and flexibility. Its known experimental form is successfully predicted as the global minimum. The computational cost of the study is tractable without the need to make unphysical simplifying assumptions.
- Published
- 2016
6. Report on the sixth blind test of organic crystal structure prediction methods
- Author
-
Elia Schneider, Harald Oberhofer, Bouke P. van Eijck, Dennis M. Elking, Rafał Podeszwa, David P. McMahon, Angeles Pulido, Christina-Anna Gatsiou, Daniël T. de Jong, Constantinos C. Pantelides, D. W. M. Hofmann, Luca Iuzzolino, Artem R. Oganov, Chris J. Pickard, Marta B. Ferraro, Jan Gerit Brandenburg, Farren Curtis, Karsten Reuter, René de Gelder, Johannes Hoja, Yanchao Wang, Sharmarke Mohamed, Rona E. Watson, Graeme M. Day, Alston J. Misquitta, Wojciech Jankiewicz, Saswata Bhattacharya, Roberto Car, Richard I. Cooper, Murray G. Read, Marcus A. Neumann, Alexander Dzyabchenko, Katherine Cosburn, Álvaro Vázquez-Mayagoitia, Luca M. Ghiringhelli, Stefan Grimme, Alexandre Tkatchenko, Jian Lv, Jack Yang, Francesca Vacarro, Patrick McCabe, Herma M. Cuppen, L. N. Kuleshova, Joost A. van den Ende, Julio C. Facelli, Yanming Ma, Claire S. Adjiman, Krzysztof Szalewicz, Renu Chadha, Gilles A. de Wijs, Sarah L. Price, Frank J. J. Leusen, Mark E. Tuckerman, Noa Marom, Niek J. J. de Klerk, Manolis Vasileiadis, Richard J. Needs, Shigeaki Obata, Gabriel Ignacio Pagola, J.E. Campbell, Anthony M. Reilly, A. Daniel Boese, Qiang Zhu, Hsin-Yu Ko, Robert A. DiStasio, Rita Bylsma, Leslie Vogt, Hugo Meekes, Xiayue Li, Artëm E. Masunov, Colin R. Groom, John Kendrick, David H. Case, Pawanpreet Singh, Thomas S. Gee, Louise S. Price, Rebecca K. Hylton, Gregory P. Shields, Jason C. Cole, Michael P. Metz, Christoph Schober, Bartomeu Monserrat, Christopher R. Taylor, Hitoshi Goto, Isaac J. Sugden, Jonas Nyman, Peter J. Bygrave, Rui Guo, Albert M. Lund, Laszlo Fusti-Molnar, Sanjaya Lohani, Anita M. Orendt, Monserrat Sanchez, Bartomeu [0000-0002-4233-4071], Needs, Richard [0000-0002-5497-9440], Pickard, Christopher [0000-0002-9684-5432], and Apollo - University of Cambridge Repository
- Subjects
Ciencias Físicas ,02 engineering and technology ,Solid State Chemistry ,010402 general chemistry ,LATTICE ENERGIES ,01 natural sciences ,crystal structure prediction ,polymorphism ,Analytical Chemistry ,purl.org/becyt/ford/1 [https] ,lattice energies ,Prediction methods ,Materials Chemistry ,Chloride salt ,Cambridge Structural Database ,Theoretical Chemistry ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Electronic Structure of Materials ,Complement (set theory) ,Structure (mathematical logic) ,Chemistry ,Metals and Alloys ,Organic crystal ,purl.org/becyt/ford/1.3 [https] ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,CRYSTAL STRUCTURE PREDICTION ,POLYMORPHISM ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Crystal structure prediction ,Astronomía ,Range (mathematics) ,Ranking ,CAMBRIDGE STRUCTURAL DATABASE ,0210 nano-technology ,Algorithm ,CIENCIAS NATURALES Y EXACTAS - Abstract
The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices´ for performing CSP calculations. All of the targets, apart from a single potentially disordered Z?? = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms. Fil: Reilly, Anthony M.. Cambridge Crystallographic Data Centre; Fil: Cooper, Richard I.. Chemistry Research Laboratory; Fil: Adjiman, Claire S.. Imperial College London; Reino Unido Fil: Bhattacharya, Saswata. Fritz Haber Institute Of The Max Planck Society; Fil: Boese, A. Daniel. Karl-franzens-universitat Graz; Austria Fil: Brandenburg, Jan Gerit. Colegio Universitario de Londres; Reino Unido. Universitat Bonn; Alemania Fil: Bygrave, Peter J.. University of Southampton; Reino Unido Fil: Bylsma, Rita. Radboud Universiteit Nijmegen; Países Bajos Fil: Campbell, Josh E.. University of Southampton; Reino Unido Fil: Car, Roberto. University of Princeton; Estados Unidos Fil: Case, David H.. University of Southampton; Reino Unido Fil: Chadha, Renu. University Institute Of Pharmaceutical Sciences India; India Fil: Cole, Jason C.. Cambridge Crystallographic Data Centre; Fil: Cosburn, Katherine. University of Tulane; Estados Unidos. University of Toronto; Canadá Fil: Cuppen, Herma M.. Radboud Universiteit Nijmegen; Países Bajos Fil: Curtis, Farren. University of Tulane; Estados Unidos. University of Carnegie Mellon; Estados Unidos Fil: Day, Graeme M.. University of Southampton; Reino Unido Fil: DiStasio, Robert A.. University of Princeton; Estados Unidos. Cornell University; Estados Unidos Fil: Dzyabchenko, Alexander. Karpov Institute Of Physical Chemistry; Fil: Van Eijck, Bouke P.. University of Utrecht; Países Bajos. Utrecht University; Países Bajos Fil: Elking, Dennis M.. Openeye Scientific Software, Inc; Fil: Van Den Ende, Joost A.. Radboud Universiteit Nijmegen; Países Bajos Fil: Facelli, Julio C.. University of Utah; Estados Unidos Fil: Ferraro, Marta B.. Universidad de Buenos Aires; Argentina Fil: Fusti-Molnar, Laszlo. Openeye Scientific Software, Inc; Fil: Gatsiou, Christina-Anna. Imperial College London; Reino Unido Fil: Gee, Thomas S.. University of Southampton; Reino Unido Fil: De Gelder, René. Radboud Universiteit Nijmegen; Países Bajos Fil: Ghiringhelli, Luca M.. Fritz Haber Institute Of The Max Planck Society; Fil: Goto, Hitoshi. Toyohashi University Of Technology; Fil: Grimme, Stefan. Universitat Bonn; Alemania Fil: Guo, Rui. Colegio Universitario de Londres; Reino Unido Fil: Hofmann, Detlef W. M.. Flexcryst; . Polaris; Fil: Hoja, Johannes. Fritz Haber Institute Of The Max Planck Society; Fil: Hylton, Rebecca K.. Colegio Universitario de Londres; Reino Unido Fil: Iuzzolino, Luca. Colegio Universitario de Londres; Reino Unido Fil: Jankiewicz, Wojciech. University Of Silesia In Katowice; Fil: De Jong, Daniël T.. Radboud Universiteit Nijmegen; Países Bajos Fil: Kendrick, John. University Of Bradford; Fil: De Klerk, Niek J. J.. Radboud Universiteit Nijmegen; Países Bajos Fil: Ko, Hsin-Yu. University of Princeton; Estados Unidos Fil: Kuleshova, Liudmila N.. Flexcryst; Fil: Li, Xiayue. University of Tulane; Estados Unidos. Argonne National Laboratory; Estados Unidos Fil: Lohani, Sanjaya. University of Tulane; Estados Unidos Fil: Leusen, Frank J. J.. University Of Bradford; Fil: Lund, Albert M.. University of Utah; Estados Unidos. Openeye Scientific Software, Inc; Fil: Lv, Jian. Jilin University; China Fil: Ma, Yanming. Jilin University; China Fil: Marom, Noa. University of Carnegie Mellon; Estados Unidos. University of Tulane; Estados Unidos Fil: Masunov, Artëm E.. University Of Central Florida; . National Research Nuclear University Mephi; Fil: McCabe, Patrick. Cambridge Crystallographic Data Centre; Fil: McMahon, David P.. University of Southampton; Reino Unido Fil: Meekes, Hugo. Radboud Universiteit Nijmegen; Países Bajos Fil: Metz, Michael P.. University Of Delaware; Fil: Misquitta, Alston J.. Queen Mary, University Of London; Fil: Mohamed, Sharmarke. Khalifa University Of Science And Technology; Fil: Monserrat, Bartomeu. Rutgers, The State University Of New Jersey; . University of Cambridge; Estados Unidos Fil: Needs, Richard J.. University of Cambridge; Estados Unidos Fil: Neumann, Marcus A.. No especifica; Fil: Nyman, Jonas. University of Southampton; Reino Unido Fil: Obata, Shigeaki. Toyohashi University Of Technology; Fil: Oberhofer, Harald. Universitat Technical Zu Munich; Alemania Fil: Oganov, Artem R.. Northwestern Polytechnical University; China. Skolkovo Institute Of Science And Technology; . Moscow Institute Of Physics And Technology; . Stony Brook University; Fil: Orendt, Anita M.. University of Utah; Estados Unidos Fil: Pagola, Gabriel Ignacio. Universidad de Buenos Aires; Argentina Fil: Pantelides, Constantinos C.. Imperial College London; Reino Unido Fil: Pickard, Chris J.. University of Cambridge; Estados Unidos. Colegio Universitario de Londres; Reino Unido Fil: Podeszwa, Rafal. University Of Silesia In Katowice; Fil: Price, Louise S.. Colegio Universitario de Londres; Reino Unido Fil: Price, Sarah L.. Colegio Universitario de Londres; Reino Unido Fil: Pulido, Angeles. University of Southampton; Reino Unido Fil: Read, Murray G.. Cambridge Crystallographic Data Centre; Fil: Reuter, Karsten. Universitat Technical Zu Munich; Alemania Fil: Schneider, Elia. University of New York; Estados Unidos Fil: Schober, Christoph. Universitat Technical Zu Munich; Alemania Fil: Shields, Gregory P.. Cambridge Crystallographic Data Centre; Fil: Singh, Pawanpreet. University Institute Of Pharmaceutical Sciences India; India Fil: Sugden, Isaac J.. Imperial College London; Reino Unido Fil: Szalewicz, Krzysztof. University Of Delaware; Fil: Taylor, Christopher R.. University of Southampton; Reino Unido Fil: Tkatchenko, Alexandre. University Of Luxembourg; . Fritz Haber Institute Of The Max Planck Society; Fil: Tuckerman, Mark E.. University of New York; Estados Unidos. New York University Shanghai; China. Courant Institute Of Mathematical Sciences; Fil: Vacarro, Francesca. University of Tulane; Estados Unidos. Loyola University New Orleans; Fil: Vasileiadis, Manolis. Imperial College London; Reino Unido Fil: Vazquez-Mayagoitia, Alvaro. Argonne National Laboratory; Estados Unidos Fil: Vogt, Leslie. University of New York; Estados Unidos Fil: Wang, Yanchao. Jilin University; China Fil: Watson, Rona E.. Colegio Universitario de Londres; Reino Unido Fil: De Wijs, Gilles A.. Radboud Universiteit Nijmegen; Países Bajos Fil: Yang, Jack. University of Southampton; Reino Unido Fil: Zhu, Qiang. Stony Brook University; Fil: Groom, Colin R.. Cambridge Crystallographic Data Centre
- Published
- 2016
7. Impact scenarios in boron carbide: A computational study
- Author
-
Isaac J. Sugden, David F. Plant, and Robert G. Bell
- Subjects
Materials science ,Icosahedral symmetry ,Ab initio ,chemistry.chemical_element ,02 engineering and technology ,Boron carbide ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Computer Science Applications ,chemistry.chemical_compound ,Molecular dynamics ,Computational Theory and Mathematics ,chemistry ,Computational chemistry ,Chemical physics ,Lattice (order) ,Radiative transfer ,Radiation damage ,Physical and Theoretical Chemistry ,0210 nano-technology ,Boron - Abstract
The effect of radiative impacts on the structure of boron carbide has been studied by both classical and ab initio simulations. As a part of this study, a new forcefield was developed for use in studying boron carbide materials. Impact scenarios in boron carbide were simulated in order to investigate the exceptional resistance of this material, and other icosahedral boron solids, to high-energy impact events. It was observed that interstitial defects created by radiative impacts are likely to be quenched locally, utilizing the high substitutional disorder of chains and cages in the boron carbide structure, rather than via impacted atoms recombining with their vacated lattice site.
- Published
- 2016
8. Accurate and efficient representation of intramolecular energy in ab initio generation of crystal structures
- Author
-
Constantinos C. Pantelides, Claire S. Adjiman, and Isaac J. Sugden
- Subjects
Physics ,010405 organic chemistry ,Ab initio ,Crystal structure ,010402 general chemistry ,Condensed Matter Physics ,01 natural sciences ,Biochemistry ,0104 chemical sciences ,Inorganic Chemistry ,Polymorphism (materials science) ,Structural Biology ,Computational chemistry ,Chemical physics ,Intramolecular force ,General Materials Science ,Physical and Theoretical Chemistry - Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.